11---
22title : " Analyse discriminante linéaire"
33author : " Guyliann Engels & Philippe Grosjean"
4- description : " **SDD III** Exercices sur l'ADL"
4+ description : " **SDD III Module 1 ** Exercices sur l'ADL"
55tutorial :
66 id : " C01Lb_lda"
7- version : 1.1.1 /5
7+ version : 1.2.0 /5
88output :
99 learnr::tutorial :
1010 progressive : true
@@ -28,14 +28,14 @@ n_learning <- round(n * 2/3)
2828set.seed(164)
2929learning <- sample(1:n, n_learning)
3030
31- bio_test <- as.data.frame( bio[ -learning, ])
32- bio_learn <- as.data.frame( bio[ learning, ])
31+ bio_test <- bio[ -learning, ]
32+ bio_learn <- bio[ learning, ]
3333
3434#bio_test <- slice(bio, -learning)
3535#bio_learn <- slice(bio, learning)
3636
3737## Creation d'un modèle lda
38- bio_lda <- mlLda(formula = gender ~ ., data = bio_learn )
38+ bio_lda <- mlLda(data = bio_learn, gender ~ .)
3939
4040## Confusion
4141bio_conf <- confusion(predict(bio_lda, bio_test), bio_test$gender)
@@ -86,20 +86,20 @@ table(bio_test$gender)
8686Réalisez un modèle avec le set d'apprentissage. Prédisez la variable ` gender ` à l'aide des 3 variables numériques.
8787
8888``` {r lda1_h2, exercise = TRUE}
89- bio_lda <- mlLda(___ ~ ___, data = ___)
89+ bio_lda <- mlLda(data = ___, ___ ~ ___)
9090summary(bio_lda)
9191```
9292
9393``` {r lda1_h2-hint-1}
94- bio_lda <- mlLda(___ ~ ___, data = bio_learn )
94+ bio_lda <- mlLda(data = bio_learn, ___ ~ ___ )
9595summary(bio_lda)
9696
9797## Attention, le prochain indice est la solution ##
9898```
9999
100100``` {r lda1_h2-solution}
101101## Solution ##
102- bio_lda <- mlLda(gender ~ ., data = bio_learn )
102+ bio_lda <- mlLda(data = bio_learn, gender ~ . )
103103summary(bio_lda)
104104```
105105
0 commit comments