|
257 | 257 | }, |
258 | 258 | { |
259 | 259 | "data": { |
260 | | - "application/javascript": [ |
261 | | - "\n", |
262 | | - " setTimeout(function() {\n", |
263 | | - " var nbb_cell_id = 42;\n", |
264 | | - " var nbb_unformatted_code = \"!pytest pytest_benchmark_example.py \";\n", |
265 | | - " var nbb_formatted_code = \"!pytest pytest_benchmark_example.py\";\n", |
266 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
267 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
268 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
269 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
270 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
271 | | - " }\n", |
272 | | - " break;\n", |
273 | | - " }\n", |
274 | | - " }\n", |
275 | | - " }, 500);\n", |
276 | | - " " |
277 | | - ], |
| 260 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 42;\n var nbb_unformatted_code = \"!pytest pytest_benchmark_example.py \";\n var nbb_formatted_code = \"!pytest pytest_benchmark_example.py\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
278 | 261 | "text/plain": [ |
279 | 262 | "<IPython.core.display.Javascript object>" |
280 | 263 | ] |
|
3597 | 3580 | }, |
3598 | 3581 | { |
3599 | 3582 | "data": { |
3600 | | - "application/javascript": [ |
3601 | | - "\n", |
3602 | | - " setTimeout(function() {\n", |
3603 | | - " var nbb_cell_id = 25;\n", |
3604 | | - " var nbb_unformatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n", |
3605 | | - " var nbb_formatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n", |
3606 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
3607 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
3608 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
3609 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
3610 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
3611 | | - " }\n", |
3612 | | - " break;\n", |
3613 | | - " }\n", |
3614 | | - " }\n", |
3615 | | - " }, 500);\n", |
3616 | | - " " |
3617 | | - ], |
| 3583 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 25;\n var nbb_unformatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n var nbb_formatted_code = \"experience1 = {\\\"machine learning\\\": 2, \\\"python\\\": 3}\\nexperience2 = {\\\"ml\\\": 2, \\\"python\\\": 3}\\n\\nDeepDiff(\\n experience1,\\n experience2,\\n exclude_paths={\\\"root['ml']\\\", \\\"root['machine learning']\\\"},\\n)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
3618 | 3584 | "text/plain": [ |
3619 | 3585 | "<IPython.core.display.Javascript object>" |
3620 | 3586 | ] |
|
3666 | 3632 | }, |
3667 | 3633 | { |
3668 | 3634 | "data": { |
3669 | | - "application/javascript": [ |
3670 | | - "\n", |
3671 | | - " setTimeout(function() {\n", |
3672 | | - " var nbb_cell_id = 34;\n", |
3673 | | - " var nbb_unformatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n", |
3674 | | - " var nbb_formatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n", |
3675 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
3676 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
3677 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
3678 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
3679 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
3680 | | - " }\n", |
3681 | | - " break;\n", |
3682 | | - " }\n", |
3683 | | - " }\n", |
3684 | | - " }, 500);\n", |
3685 | | - " " |
3686 | | - ], |
| 3635 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 34;\n var nbb_unformatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n var nbb_formatted_code = \"num1 = 0.258\\nnum2 = 0.259\\n\\nDeepDiff(num1, num2, significant_digits=2)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
3687 | 3636 | "text/plain": [ |
3688 | 3637 | "<IPython.core.display.Javascript object>" |
3689 | 3638 | ] |
|
3997 | 3946 | "outputs": [ |
3998 | 3947 | { |
3999 | 3948 | "data": { |
4000 | | - "application/javascript": [ |
4001 | | - "\n", |
4002 | | - " setTimeout(function() {\n", |
4003 | | - " var nbb_cell_id = 18;\n", |
4004 | | - " var nbb_unformatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n", |
4005 | | - " var nbb_formatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n", |
4006 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4007 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4008 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4009 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4010 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4011 | | - " }\n", |
4012 | | - " break;\n", |
4013 | | - " }\n", |
4014 | | - " }\n", |
4015 | | - " }, 500);\n", |
4016 | | - " " |
4017 | | - ], |
| 3949 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 18;\n var nbb_unformatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n var nbb_formatted_code = \"from deepchecks.checks.integrity.new_category import CategoryMismatchTrainTest\\nfrom deepchecks.base import Dataset\\nimport pandas as pd\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4018 | 3950 | "text/plain": [ |
4019 | 3951 | "<IPython.core.display.Javascript object>" |
4020 | 3952 | ] |
|
4042 | 3974 | "outputs": [ |
4043 | 3975 | { |
4044 | 3976 | "data": { |
4045 | | - "application/javascript": [ |
4046 | | - "\n", |
4047 | | - " setTimeout(function() {\n", |
4048 | | - " var nbb_cell_id = 19;\n", |
4049 | | - " var nbb_unformatted_code = \"train = pd.DataFrame({'col1': ['a', 'b', 'c']})\\ntest = pd.DataFrame({'col1': ['c', 'd', 'e']})\\n\\ntrain_ds = Dataset(train, cat_features=['col1'])\\ntest_ds = Dataset(test, cat_features=['col1'])\";\n", |
4050 | | - " var nbb_formatted_code = \"train = pd.DataFrame({\\\"col1\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\"]})\\ntest = pd.DataFrame({\\\"col1\\\": [\\\"c\\\", \\\"d\\\", \\\"e\\\"]})\\n\\ntrain_ds = Dataset(train, cat_features=[\\\"col1\\\"])\\ntest_ds = Dataset(test, cat_features=[\\\"col1\\\"])\";\n", |
4051 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4052 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4053 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4054 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4055 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4056 | | - " }\n", |
4057 | | - " break;\n", |
4058 | | - " }\n", |
4059 | | - " }\n", |
4060 | | - " }, 500);\n", |
4061 | | - " " |
4062 | | - ], |
| 3977 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 19;\n var nbb_unformatted_code = \"train = pd.DataFrame({'col1': ['a', 'b', 'c']})\\ntest = pd.DataFrame({'col1': ['c', 'd', 'e']})\\n\\ntrain_ds = Dataset(train, cat_features=['col1'])\\ntest_ds = Dataset(test, cat_features=['col1'])\";\n var nbb_formatted_code = \"train = pd.DataFrame({\\\"col1\\\": [\\\"a\\\", \\\"b\\\", \\\"c\\\"]})\\ntest = pd.DataFrame({\\\"col1\\\": [\\\"c\\\", \\\"d\\\", \\\"e\\\"]})\\n\\ntrain_ds = Dataset(train, cat_features=[\\\"col1\\\"])\\ntest_ds = Dataset(test, cat_features=[\\\"col1\\\"])\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4063 | 3978 | "text/plain": [ |
4064 | 3979 | "<IPython.core.display.Javascript object>" |
4065 | 3980 | ] |
|
4143 | 4058 | }, |
4144 | 4059 | { |
4145 | 4060 | "data": { |
4146 | | - "application/javascript": [ |
4147 | | - "\n", |
4148 | | - " setTimeout(function() {\n", |
4149 | | - " var nbb_cell_id = 22;\n", |
4150 | | - " var nbb_unformatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n", |
4151 | | - " var nbb_formatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n", |
4152 | | - " var nbb_cells = Jupyter.notebook.get_cells();\n", |
4153 | | - " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
4154 | | - " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
4155 | | - " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
4156 | | - " nbb_cells[i].set_text(nbb_formatted_code);\n", |
4157 | | - " }\n", |
4158 | | - " break;\n", |
4159 | | - " }\n", |
4160 | | - " }\n", |
4161 | | - " }, 500);\n", |
4162 | | - " " |
4163 | | - ], |
| 4061 | + "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 22;\n var nbb_unformatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n var nbb_formatted_code = \"CategoryMismatchTrainTest().run(train_ds, test_ds)\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
4164 | 4062 | "text/plain": [ |
4165 | 4063 | "<IPython.core.display.Javascript object>" |
4166 | 4064 | ] |
|
4723 | 4621 | "celltoolbar": "Tags", |
4724 | 4622 | "hide_input": false, |
4725 | 4623 | "kernelspec": { |
4726 | | - "display_name": "Python 3 (ipykernel)", |
| 4624 | + "display_name": "Python 3", |
4727 | 4625 | "language": "python", |
4728 | 4626 | "name": "python3" |
4729 | 4627 | }, |
|
4737 | 4635 | "name": "python", |
4738 | 4636 | "nbconvert_exporter": "python", |
4739 | 4637 | "pygments_lexer": "ipython3", |
4740 | | - "version": "3.11.6" |
| 4638 | + "version": "3.11.2" |
4741 | 4639 | }, |
4742 | 4640 | "toc": { |
4743 | 4641 | "base_numbering": 1, |
|
4751 | 4649 | "toc_position": {}, |
4752 | 4650 | "toc_section_display": true, |
4753 | 4651 | "toc_window_display": false |
4754 | | - }, |
4755 | | - "vscode": { |
4756 | | - "interpreter": { |
4757 | | - "hash": "c3bc044b9863ed6dec4c55e7ad5af27f030f7d27aed3f39d7a4886a926c4e2c1" |
4758 | | - } |
4759 | 4652 | } |
4760 | 4653 | }, |
4761 | 4654 | "nbformat": 4, |
|
0 commit comments