@@ -18,11 +18,15 @@ In the `random` module of NumPy, the **`.beta()`** method generates random sampl
1818
1919The Beta distribution has the probability function:
2020
21- $$ f\left(x; \alpha, \beta \right) = \int \frac{1}{B\left(\alpha, \beta \right)} x^{\alpha -1} \left(1-x \right)^{\beta -1} $$
21+ ``` tex
22+ f\left(x; \alpha, \beta \right) = \frac{1}{B\left(\alpha, \beta \right)} x^{\alpha -1} \left(1-x \right)^{\beta -1}
23+ ```
2224
2325Where ` B ` represents the beta function:
2426
25- $$ B(\alpha, \beta) = \int_0^1 t^{\alpha -1} (1-t)^{\beta -1 } dt $$
27+ ``` tex
28+ B(\alpha, \beta) = \int_0^1 t^{\alpha -1} (1-t)^{\beta -1 } dt
29+ ```
2630
2731## Syntax
2832
@@ -32,8 +36,8 @@ numpy.random.beta(a, b, size=None)
3236
3337** Parameters:**
3438
35- - ` a ` (float or array_like of floats): The alpha ($\alpha$) shape parameter. This must be a positive value.
36- - ` b ` (float or array_like of floats): The beta ($\beta$) shape parameter. This must also be positive.
39+ - ` a ` (float or array_like of floats): The alpha shape parameter. This must be a positive value.
40+ - ` b ` (float or array_like of floats): The beta shape parameter. This must also be positive.
3741- ` size ` (Optional): Defines the shape of the output array. If not provided, the behavior depends on whether ` a ` and ` b ` are scalars or arrays.
3842
3943** Return value:**
@@ -45,7 +49,7 @@ In NumPy, the `.beta()` function returns a randomly drawn sample or an array of
4549
4650## Example: Generating Random Values from a Beta Distribution
4751
48- The example below shows how to generate random values from a beta distribution configured with an $\ alpha$ and $\ beta$ value:
52+ The example below shows how to generate random values from a beta distribution configured with an alpha and beta value:
4953
5054``` py
5155import numpy as np
@@ -62,13 +66,13 @@ A possible output of this code can be:
6266[0.14092969 0.52861406 0.15658351 0.545189 0.47077243]
6367```
6468
65- This code randomly draws 5 values from a beta distribution with a $\ alpha$ of 3 and a $\ beta$ of 4.
69+ This code randomly draws 5 values from a beta distribution with an alpha of 3 and a beta of 4.
6670
6771> ** Note:** The output may vary with each execution because the values are randomly generated.
6872
6973## Codebyte Example
7074
71- In this codebyte example, we sample 5 values from a beta distribution with an $\ alpha$ or (` a ` ) of 2 and a $\ beta$ or (` b ` ) of 5:
75+ In this codebyte example, we sample 5 values from a beta distribution with an alpha or (` a ` ) of 2 and a beta or (` b ` ) of 5:
7276
7377``` codebyte/python
7478import numpy as np
0 commit comments