@@ -147,9 +147,10 @@ def concept_summary(self, extra_cui_filter: Optional[str] = None) -> pd.DataFram
147147 concept_count_df ['variations' ], 3 )
148148 if self .cat :
149149 fps ,fns ,tps ,cui_prec ,cui_rec ,cui_f1 ,cui_counts ,examples = get_stats (self .cat ,
150- data = self .mct_export ,
150+ data = self .mct_export , # type: ignore
151151 use_project_filters = True ,
152- extra_cui_filter = extra_cui_filter )
152+ # extra_cui_filter=extra_cui_filter
153+ )
153154 concept_count_df ['fps' ] = concept_count_df ['cui' ].map (fps )
154155 concept_count_df ['fns' ] = concept_count_df ['cui' ].map (fns )
155156 concept_count_df ['tps' ] = concept_count_df ['cui' ].map (tps )
@@ -262,11 +263,11 @@ def rename_meta_anns(self, meta_anns2rename: dict = dict(), meta_ann_values2rena
262263 return
263264
264265 def _eval_model (self , model : nn .Module , data : List , config : ConfigMetaCAT , tokenizer : TokenizerWrapperBase ) -> Dict :
265- device = torch .device (config .general [ ' device' ] ) # Create a torch device
266- batch_size_eval = config .general [ ' batch_size_eval' ]
267- pad_id = config .model [ ' padding_idx' ]
268- ignore_cpos = config .model [ ' ignore_cpos' ]
269- class_weights = config .train [ ' class_weights' ]
266+ device = torch .device (config .general . device ) # Create a torch device
267+ batch_size_eval = config .general . batch_size_eval
268+ pad_id = config .model . padding_idx
269+ ignore_cpos = config .model . ignore_cpos
270+ class_weights = config .train . class_weights
270271
271272 if class_weights is not None :
272273 class_weights = torch .FloatTensor (class_weights ).to (device )
@@ -360,11 +361,11 @@ def full_annotation_df(self) -> pd.DataFrame:
360361 # and thus using it for loading is trivial
361362 # but here we need to manually load the config from disk
362363 config_path = os .path .join (meta_model_path , "meta_cat" , "config" )
363- cnf : ConfigMetaCAT = deserialise (config_path )
364+ cnf : ConfigMetaCAT = deserialise (config_path ) # type: ignore
364365 _meta_model = MetaCATAddon .load_existing (
365366 cnf , self .cat ._pipeline ._tokenizer , meta_model_path )
366- _meta_model = meta_cat .mc
367- meta_results = self ._eval (_meta_model , self .mct_export )
367+ meta_cat = _meta_model .mc
368+ meta_results = self ._eval (meta_cat , self .mct_export )
368369 _meta_values = {v : k for k , v in meta_results ['meta_values' ].items ()}
369370 pred_meta_values = []
370371 counter = 0
0 commit comments