Skip to content

Suggestion to improve efficiency in the unicorn notebook  #2

@abouelkhair5

Description

@abouelkhair5

In the unicorn notebook and specially in the prepare_graph function you call nodes.keys and index function twice and those are expensive calls that result in the prepare_graph call taking over 2 hours on a very strong machine

edge_index = [[], []]
for src, dst in edges:
    src_index = list(nodes.keys()).index(src)
    dst_index = list(nodes.keys()).index(dst)
    edge_index[0].append(src_index)
    edge_index[1].append(dst_index)

an alternative would be to precompute all the indencies and store them in a hashmap and compute the graph in a few seconds
for example:

node_index_map = {node: i for i, node in enumerate(nodes.keys())}
for src, dst in tqdm(edges):
    src_index = node_index_map[src]
    dst_index = node_index_map[dst]
    edge_index[0].append(src_index)
    edge_index[1].append(dst_index)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions