-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
不同多尺度的pk
数据集
- 训练集:clothes std 2.1
- 验证集:LIP986
炼丹参数
- config.input_w = 384
- config.input_h = 384
- config.core.cls_num = 4
- config.aug.ImageWithMasksRandomRotateAug.max_angle = 45
- config.core.batch_size = 8
- config.core.mean = config.data['mean']
- config.core.std = config.data['std']
- config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
- config.core.optimizer = torch.optim.SGD(config.core.net.parameters(), 5e-3, momentum=0.9)
- config.core.scheduler = optim.lr_scheduler.MultiStepLR(config.core.optimizer, milestones=[20,40,55,70,80,90,100,110,120,130,140,150,160], gamma=0.27030)
- config.core.criterion = torch.nn.CrossEntropyLoss(weight)
- AugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 =>UDmotionAug@0.1 => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.15 => BrightnessJitterAug@0.15 =>ContrastJitterAug@0.15 => ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksNormalizeAug =>ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>ImageWithMasksToTensorAug', deepvac_config)
Train
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 2.0, 1.75, 1.5, 1.25, 1
Epoch No.: 0 TRAIN Loss = 0.7410 TRAIN mIOU = 0.6298
Epoch No.: 1 TRAIN Loss = 0.6346 TRAIN mIOU = 0.6695
Epoch No.: 2 TRAIN Loss = 0.5823 TRAIN mIOU = 0.6901
Epoch No.: 3 TRAIN Loss = 0.5556 TRAIN mIOU = 0.6985
Epoch No.: 4 TRAIN Loss = 0.5197 TRAIN mIOU = 0.7122
Epoch No.: 5 TRAIN Loss = 0.5197 TRAIN mIOU = 0.7111
Epoch No.: 6 TRAIN Loss = 0.4832 TRAIN mIOU = 0.7300
Epoch No.: 7 TRAIN Loss = 0.4737 TRAIN mIOU = 0.7334
Epoch No.: 8 TRAIN Loss = 0.4673 TRAIN mIOU = 0.7334
Epoch No.: 9 TRAIN Loss = 0.4544 TRAIN mIOU = 0.7406
Epoch No.: 10 TRAIN Loss = 0.4384 TRAIN mIOU = 0.7477
Epoch No.: 11 TRAIN Loss = 0.4404 TRAIN mIOU = 0.7451
Epoch No.: 12 TRAIN Loss = 0.4195 TRAIN mIOU = 0.7553
Epoch No.: 13 TRAIN Loss = 0.4145 TRAIN mIOU = 0.7527
Epoch No.: 14 TRAIN Loss = 0.4114 TRAIN mIOU = 0.7590
Epoch No.: 15 TRAIN Loss = 0.4026 TRAIN mIOU = 0.7625
Epoch No.: 16 TRAIN Loss = 0.3955 TRAIN mIOU = 0.7651
Epoch No.: 17 TRAIN Loss = 0.3965 TRAIN mIOU = 0.7600
Epoch No.: 18 TRAIN Loss = 0.3644 TRAIN mIOU = 0.7791
Epoch No.: 19 TRAIN Loss = 0.3848 TRAIN mIOU = 0.7707
Epoch No.: 20 TRAIN Loss = 0.3595 TRAIN mIOU = 0.7828
Epoch No.: 21 TRAIN Loss = 0.3410 TRAIN mIOU = 0.7878
Epoch No.: 22 TRAIN Loss = 0.3373 TRAIN mIOU = 0.7897
Epoch No.: 23 TRAIN Loss = 0.3347 TRAIN mIOU = 0.7900
Epoch No.: 24 TRAIN Loss = 0.3215 TRAIN mIOU = 0.7972
Epoch No.: 25 TRAIN Loss = 0.3285 TRAIN mIOU = 0.7950
Epoch No.: 26 TRAIN Loss = 0.3271 TRAIN mIOU = 0.7948
Epoch No.: 27 TRAIN Loss = 0.3280 TRAIN mIOU = 0.7967
Epoch No.: 28 TRAIN Loss = 0.3176 TRAIN mIOU = 0.7990
Epoch No.: 29 TRAIN Loss = 0.3174 TRAIN mIOU = 0.7997
Epoch No.: 30 TRAIN Loss = 0.3141 TRAIN mIOU = 0.7984
Epoch No.: 31 TRAIN Loss = 0.3192 TRAIN mIOU = 0.8005
Epoch No.: 32 TRAIN Loss = 0.3201 TRAIN mIOU = 0.8000
Epoch No.: 33 TRAIN Loss = 0.3105 TRAIN mIOU = 0.8026
Epoch No.: 34 TRAIN Loss = 0.3102 TRAIN mIOU = 0.8026
Epoch No.: 35 TRAIN Loss = 0.3039 TRAIN mIOU = 0.8049
Epoch No.: 36 TRAIN Loss = 0.3102 TRAIN mIOU = 0.8012
Epoch No.: 37 TRAIN Loss = 0.3084 TRAIN mIOU = 0.8028
Epoch No.: 38 TRAIN Loss = 0.3047 TRAIN mIOU = 0.8070
Epoch No.: 39 TRAIN Loss = 0.3096 TRAIN mIOU = 0.8071
Epoch No.: 40 TRAIN Loss = 0.3021 TRAIN mIOU = 0.8081
Epoch No.: 41 TRAIN Loss = 0.3000 TRAIN mIOU = 0.8061
Epoch No.: 42 TRAIN Loss = 0.2979 TRAIN mIOU = 0.8097
Epoch No.: 43 TRAIN Loss = 0.2945 TRAIN mIOU = 0.8095
Epoch No.: 44 TRAIN Loss = 0.2974 TRAIN mIOU = 0.8100
Epoch No.: 45 TRAIN Loss = 0.2967 TRAIN mIOU = 0.8093
Epoch No.: 46 TRAIN Loss = 0.2974 TRAIN mIOU = 0.8076
Epoch No.: 47 TRAIN Loss = 0.2954 TRAIN mIOU = 0.8126
Epoch No.: 48 TRAIN Loss = 0.2982 TRAIN mIOU = 0.8123
Epoch No.: 49 TRAIN Loss = 0.2986 TRAIN mIOU = 0.8078config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 1.5, 1.25, 1.0, 0.75, 0.5
gemfield@pytorch180-ai1-gemfield:/gemfield/hostpv2/gemfield/ESPNet/log$ cat 105818:train:2021-05-27-15-45:master.log | grep -i miou | grep TRAIN
Epoch No.: 0 TRAIN Loss = 0.7080 TRAIN mIOU = 0.6523
Epoch No.: 1 TRAIN Loss = 0.5985 TRAIN mIOU = 0.6916
Epoch No.: 2 TRAIN Loss = 0.5326 TRAIN mIOU = 0.7177
Epoch No.: 3 TRAIN Loss = 0.4905 TRAIN mIOU = 0.7363
Epoch No.: 4 TRAIN Loss = 0.4528 TRAIN mIOU = 0.7491
Epoch No.: 5 TRAIN Loss = 0.4408 TRAIN mIOU = 0.7557
Epoch No.: 6 TRAIN Loss = 0.4357 TRAIN mIOU = 0.7571
Epoch No.: 7 TRAIN Loss = 0.4214 TRAIN mIOU = 0.7636
Epoch No.: 8 TRAIN Loss = 0.3963 TRAIN mIOU = 0.7768
Epoch No.: 9 TRAIN Loss = 0.3855 TRAIN mIOU = 0.7770
Epoch No.: 10 TRAIN Loss = 0.3882 TRAIN mIOU = 0.7800
Epoch No.: 11 TRAIN Loss = 0.3703 TRAIN mIOU = 0.7846
Epoch No.: 12 TRAIN Loss = 0.3577 TRAIN mIOU = 0.7924
Epoch No.: 13 TRAIN Loss = 0.3627 TRAIN mIOU = 0.7873
Epoch No.: 14 TRAIN Loss = 0.3526 TRAIN mIOU = 0.7916
Epoch No.: 15 TRAIN Loss = 0.3467 TRAIN mIOU = 0.7969
Epoch No.: 16 TRAIN Loss = 0.3446 TRAIN mIOU = 0.7960
Epoch No.: 17 TRAIN Loss = 0.3364 TRAIN mIOU = 0.8003
Epoch No.: 18 TRAIN Loss = 0.3258 TRAIN mIOU = 0.8046
Epoch No.: 19 TRAIN Loss = 0.3259 TRAIN mIOU = 0.8053
Epoch No.: 20 TRAIN Loss = 0.3092 TRAIN mIOU = 0.8119
Epoch No.: 21 TRAIN Loss = 0.3071 TRAIN mIOU = 0.8142
Epoch No.: 22 TRAIN Loss = 0.3000 TRAIN mIOU = 0.8151
Epoch No.: 23 TRAIN Loss = 0.3009 TRAIN mIOU = 0.8162
Epoch No.: 24 TRAIN Loss = 0.2949 TRAIN mIOU = 0.8224
Epoch No.: 25 TRAIN Loss = 0.2943 TRAIN mIOU = 0.8209
Epoch No.: 26 TRAIN Loss = 0.3017 TRAIN mIOU = 0.8120
Epoch No.: 27 TRAIN Loss = 0.2901 TRAIN mIOU = 0.8230
Epoch No.: 28 TRAIN Loss = 0.2903 TRAIN mIOU = 0.8253
Epoch No.: 29 TRAIN Loss = 0.2937 TRAIN mIOU = 0.8228
Epoch No.: 30 TRAIN Loss = 0.2907 TRAIN mIOU = 0.8234
Epoch No.: 31 TRAIN Loss = 0.2822 TRAIN mIOU = 0.8268
Epoch No.: 32 TRAIN Loss = 0.2863 TRAIN mIOU = 0.8245
Epoch No.: 33 TRAIN Loss = 0.2855 TRAIN mIOU = 0.8261
Epoch No.: 34 TRAIN Loss = 0.2784 TRAIN mIOU = 0.8336
Epoch No.: 35 TRAIN Loss = 0.2817 TRAIN mIOU = 0.8265
Epoch No.: 36 TRAIN Loss = 0.2735 TRAIN mIOU = 0.8291
Epoch No.: 37 TRAIN Loss = 0.2853 TRAIN mIOU = 0.8250
Epoch No.: 38 TRAIN Loss = 0.2804 TRAIN mIOU = 0.8263
Epoch No.: 39 TRAIN Loss = 0.2760 TRAIN mIOU = 0.8301
Epoch No.: 40 TRAIN Loss = 0.2725 TRAIN mIOU = 0.8294
Epoch No.: 41 TRAIN Loss = 0.2781 TRAIN mIOU = 0.8289
Epoch No.: 42 TRAIN Loss = 0.2714 TRAIN mIOU = 0.8325
Epoch No.: 43 TRAIN Loss = 0.2802 TRAIN mIOU = 0.8273
Epoch No.: 44 TRAIN Loss = 0.2779 TRAIN mIOU = 0.8281
Epoch No.: 45 TRAIN Loss = 0.2795 TRAIN mIOU = 0.8227
Epoch No.: 46 TRAIN Loss = 0.2639 TRAIN mIOU = 0.8373
Epoch No.: 47 TRAIN Loss = 0.2688 TRAIN mIOU = 0.8304
Epoch No.: 48 TRAIN Loss = 0.2773 TRAIN mIOU = 0.8265
Epoch No.: 49 TRAIN Loss = 0.2707 TRAIN mIOU = 0.8313VAL
config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 2.0, 1.75, 1.5, 1.25, 1
Epoch No.: 0 VAL Loss = 0.4397 VAL mIOU = 0.6157
Epoch No.: 1 VAL Loss = 1.0275 VAL mIOU = 0.6647
Epoch No.: 2 VAL Loss = 1.0030 VAL mIOU = 0.6670
Epoch No.: 3 VAL Loss = 0.9768 VAL mIOU = 0.6272
Epoch No.: 4 VAL Loss = 0.9051 VAL mIOU = 0.6783
Epoch No.: 5 VAL Loss = 0.4021 VAL mIOU = 0.6695
Epoch No.: 6 VAL Loss = 0.1785 VAL mIOU = 0.6677
Epoch No.: 7 VAL Loss = 0.2535 VAL mIOU = 0.6786
Epoch No.: 8 VAL Loss = 0.2187 VAL mIOU = 0.6725
Epoch No.: 9 VAL Loss = 0.3153 VAL mIOU = 0.6861
Epoch No.: 10 VAL Loss = 0.3899 VAL mIOU = 0.6830
Epoch No.: 11 VAL Loss = 0.8716 VAL mIOU = 0.6870
Epoch No.: 12 VAL Loss = 0.3529 VAL mIOU = 0.6922
Epoch No.: 13 VAL Loss = 0.5868 VAL mIOU = 0.6852
Epoch No.: 14 VAL Loss = 0.6046 VAL mIOU = 0.6880
Epoch No.: 15 VAL Loss = 0.2905 VAL mIOU = 0.6948
Epoch No.: 16 VAL Loss = 0.1958 VAL mIOU = 0.6816
Epoch No.: 17 VAL Loss = 0.4475 VAL mIOU = 0.6891
Epoch No.: 18 VAL Loss = 0.1578 VAL mIOU = 0.6989
Epoch No.: 19 VAL Loss = 0.2862 VAL mIOU = 0.7041
Epoch No.: 20 VAL Loss = 0.4287 VAL mIOU = 0.7104
Epoch No.: 21 VAL Loss = 0.4995 VAL mIOU = 0.7036
Epoch No.: 22 VAL Loss = 0.4040 VAL mIOU = 0.7047
Epoch No.: 23 VAL Loss = 0.2101 VAL mIOU = 0.7023
Epoch No.: 24 VAL Loss = 0.4608 VAL mIOU = 0.7026
Epoch No.: 25 VAL Loss = 0.3806 VAL mIOU = 0.7033
Epoch No.: 26 VAL Loss = 0.3756 VAL mIOU = 0.7023
Epoch No.: 27 VAL Loss = 0.5805 VAL mIOU = 0.7032
Epoch No.: 28 VAL Loss = 0.3759 VAL mIOU = 0.7094
Epoch No.: 29 VAL Loss = 0.4081 VAL mIOU = 0.6970
Epoch No.: 30 VAL Loss = 0.1993 VAL mIOU = 0.7078
Epoch No.: 31 VAL Loss = 0.3640 VAL mIOU = 0.7071
Epoch No.: 32 VAL Loss = 0.3213 VAL mIOU = 0.7089
Epoch No.: 33 VAL Loss = 0.4832 VAL mIOU = 0.7085
Epoch No.: 34 VAL Loss = 0.2025 VAL mIOU = 0.7097
Epoch No.: 35 VAL Loss = 0.1654 VAL mIOU = 0.7108
Epoch No.: 36 VAL Loss = 0.4561 VAL mIOU = 0.7117
Epoch No.: 37 VAL Loss = 0.4685 VAL mIOU = 0.7139
Epoch No.: 38 VAL Loss = 0.6386 VAL mIOU = 0.7068
Epoch No.: 39 VAL Loss = 0.2288 VAL mIOU = 0.7123
Epoch No.: 40 VAL Loss = 0.1666 VAL mIOU = 0.7111
Epoch No.: 41 VAL Loss = 0.3827 VAL mIOU = 0.7101
Epoch No.: 42 VAL Loss = 0.3823 VAL mIOU = 0.7052
Epoch No.: 43 VAL Loss = 0.2659 VAL mIOU = 0.7132
Epoch No.: 44 VAL Loss = 0.4662 VAL mIOU = 0.7042
Epoch No.: 45 VAL Loss = 0.2377 VAL mIOU = 0.7075
Epoch No.: 46 VAL Loss = 0.4985 VAL mIOU = 0.7081
Epoch No.: 47 VAL Loss = 0.2234 VAL mIOU = 0.7029
Epoch No.: 48 VAL Loss = 0.1307 VAL mIOU = 0.7111
Epoch No.: 49 VAL Loss = 0.2732 VAL mIOU = 0.7076config.core.train_loader_list = [scale1_train_loader, scale2_train_loader, scale4_train_loader, scale3_train_loader, last_train_loader] i.e. 1.5, 1.25, 1.0, 0.75, 0.5
gemfield@pytorch180-ai1-gemfield:/gemfield/hostpv2/gemfield/ESPNet/log$ cat 105818:train:2021-05-27-15-45:master.log | grep -i miou | grep VAL
Epoch No.: 0 VAL Loss = 0.8419 VAL mIOU = 0.6277
Epoch No.: 1 VAL Loss = 0.9472 VAL mIOU = 0.6566
Epoch No.: 2 VAL Loss = 0.4658 VAL mIOU = 0.6742
Epoch No.: 3 VAL Loss = 0.5841 VAL mIOU = 0.6857
Epoch No.: 4 VAL Loss = 0.5117 VAL mIOU = 0.7004
Epoch No.: 5 VAL Loss = 0.8669 VAL mIOU = 0.6914
Epoch No.: 6 VAL Loss = 0.4079 VAL mIOU = 0.6920
Epoch No.: 7 VAL Loss = 0.3610 VAL mIOU = 0.6955
Epoch No.: 8 VAL Loss = 0.3077 VAL mIOU = 0.6997
Epoch No.: 9 VAL Loss = 0.4553 VAL mIOU = 0.7033
Epoch No.: 10 VAL Loss = 0.4310 VAL mIOU = 0.7100
Epoch No.: 11 VAL Loss = 0.3306 VAL mIOU = 0.6955
Epoch No.: 12 VAL Loss = 0.3901 VAL mIOU = 0.6958
Epoch No.: 13 VAL Loss = 0.3691 VAL mIOU = 0.7121
Epoch No.: 14 VAL Loss = 0.3558 VAL mIOU = 0.7042
Epoch No.: 15 VAL Loss = 0.4140 VAL mIOU = 0.7154
Epoch No.: 16 VAL Loss = 0.2561 VAL mIOU = 0.7108
Epoch No.: 17 VAL Loss = 0.3044 VAL mIOU = 0.7114
Epoch No.: 18 VAL Loss = 0.2137 VAL mIOU = 0.7205
Epoch No.: 19 VAL Loss = 0.2746 VAL mIOU = 0.7124
Epoch No.: 20 VAL Loss = 0.2950 VAL mIOU = 0.7128
Epoch No.: 21 VAL Loss = 0.3457 VAL mIOU = 0.7175
Epoch No.: 22 VAL Loss = 0.3355 VAL mIOU = 0.7162
Epoch No.: 23 VAL Loss = 0.3961 VAL mIOU = 0.7216
Epoch No.: 24 VAL Loss = 0.3026 VAL mIOU = 0.7194
Epoch No.: 25 VAL Loss = 0.3828 VAL mIOU = 0.7188
Epoch No.: 26 VAL Loss = 0.2382 VAL mIOU = 0.7198
Epoch No.: 27 VAL Loss = 0.2619 VAL mIOU = 0.7197
Epoch No.: 28 VAL Loss = 0.5161 VAL mIOU = 0.7191
Epoch No.: 29 VAL Loss = 0.3994 VAL mIOU = 0.7218
Epoch No.: 30 VAL Loss = 0.4033 VAL mIOU = 0.7216
Epoch No.: 31 VAL Loss = 0.2715 VAL mIOU = 0.7235
Epoch No.: 32 VAL Loss = 0.2288 VAL mIOU = 0.7223
Epoch No.: 33 VAL Loss = 0.3293 VAL mIOU = 0.7207
Epoch No.: 34 VAL Loss = 0.5659 VAL mIOU = 0.7262
Epoch No.: 35 VAL Loss = 0.2931 VAL mIOU = 0.7194
Epoch No.: 36 VAL Loss = 0.2304 VAL mIOU = 0.7262
Epoch No.: 37 VAL Loss = 0.3143 VAL mIOU = 0.7269
Epoch No.: 38 VAL Loss = 0.2803 VAL mIOU = 0.7249
Epoch No.: 39 VAL Loss = 0.2798 VAL mIOU = 0.7214
Epoch No.: 40 VAL Loss = 0.2298 VAL mIOU = 0.7224
Epoch No.: 41 VAL Loss = 0.3494 VAL mIOU = 0.7317
Epoch No.: 42 VAL Loss = 0.4371 VAL mIOU = 0.7270
Epoch No.: 43 VAL Loss = 0.2596 VAL mIOU = 0.7270
Epoch No.: 44 VAL Loss = 0.3839 VAL mIOU = 0.7284
Epoch No.: 45 VAL Loss = 0.2850 VAL mIOU = 0.7271
Epoch No.: 46 VAL Loss = 0.1963 VAL mIOU = 0.7279
Epoch No.: 47 VAL Loss = 0.2057 VAL mIOU = 0.7247
Epoch No.: 48 VAL Loss = 0.3545 VAL mIOU = 0.7264
Epoch No.: 49 VAL Loss = 0.2581 VAL mIOU = 0.7220Metadata
Metadata
Assignees
Labels
No labels