-
Notifications
You must be signed in to change notification settings - Fork 66
Open
Description
按照示例中我们有的是三维的:
[n_seqs, n_sequencd_length, lstm_num_units]
现在要变成二维的:
[n_seqs * n_sequencd_length, lstm_num_units]
是不是应该在第0维度上进行拼接?axis=0而不是axis=1?
比如我有下面的数据:
t1 = [ [[0,1],[2,3],[3,4],[4,5]], [[5,6],[6,7],[7,8],[8,9]], [[9,10],[10,11],[11,12],[12,13]] ] t2=tf.concat(t1,axis=0) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(t2)) # t2是[[ 0 1] [ 2 3] [ 3 4] [ 4 5] [ 5 6] [ 6 7] [ 7 8] [ 8 9] [ 9 10] [10 11] [11 12] [12 13]]
如果按照axis=1拼接的话,是在第二个维度拼接,会变成:
[[ 0 1 5 6 9 10] [ 2 3 6 7 10 11] [ 3 4 7 8 11 12] [ 4 5 8 9 12 13]]
是我理解错了还是这里有问题,感觉输出的最终维度(列)应该就是lstm的units
Dod-o
Metadata
Metadata
Assignees
Labels
No labels