Skip to content

Commit 42551e4

Browse files
committed
update did sim lgbm
1 parent 2ca4de9 commit 42551e4

File tree

8 files changed

+201
-201
lines changed

8 files changed

+201
-201
lines changed

monte-cover/src/montecover/did/did_pa_multi.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -46,15 +46,15 @@ def _process_config_parameters(self):
4646
if learner["ml_g"][0] == "Linear":
4747
learner["ml_g"] = ("Linear", LinearRegression())
4848
elif learner["ml_g"][0] == "LGBM":
49-
learner["ml_g"] = ("LGBM", LGBMRegressor(n_estimators=100, learning_rate=0.05, verbose=-1, n_jobs=1))
49+
learner["ml_g"] = ("LGBM", LGBMRegressor(n_estimators=500, learning_rate=0.02, verbose=-1, n_jobs=1))
5050
else:
5151
raise ValueError(f"Unknown learner type: {learner['ml_g']}")
5252

5353
# Convert ml_m strings to actual objects
5454
if learner["ml_m"][0] == "Linear":
5555
learner["ml_m"] = ("Linear", LogisticRegression())
5656
elif learner["ml_m"][0] == "LGBM":
57-
learner["ml_m"] = ("LGBM", LGBMClassifier(n_estimators=100, learning_rate=0.05, verbose=-1, n_jobs=1))
57+
learner["ml_m"] = ("LGBM", LGBMClassifier(n_estimators=500, learning_rate=0.02, verbose=-1, n_jobs=1))
5858
else:
5959
raise ValueError(f"Unknown learner type: {learner['ml_m']}")
6060

results/did/did_multi_detailed.csv

Lines changed: 48 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -1,49 +1,49 @@
11
Learner g,Learner m,Score,In-sample-norm.,DGP,level,Coverage,CI Length,Bias,Uniform Coverage,Uniform CI Length,repetition
2-
LGBM,LGBM,experimental,False,1,0.9,0.5624166666666667,2.2105706879826315,1.0918363543984133,0.392,3.1595897256714163,1000
3-
LGBM,LGBM,experimental,False,1,0.95,0.6753333333333333,2.634057439965576,1.0918363543984133,0.527,3.5384433304110696,1000
4-
LGBM,LGBM,experimental,False,4,0.9,0.56225,1.9056063148380724,0.9987888659120285,0.32,2.8139576308162675,1000
5-
LGBM,LGBM,experimental,False,4,0.95,0.66375,2.270669976098066,0.9987888659120285,0.434,3.1260300175350486,1000
6-
LGBM,LGBM,experimental,False,6,0.9,0.901,1.9297833165451947,0.4650292370505929,0.894,2.843058037413404,1000
7-
LGBM,LGBM,experimental,False,6,0.95,0.9490833333333334,2.2994786505136418,0.4650292370505929,0.95,3.1607650795805657,1000
8-
LGBM,LGBM,experimental,True,1,0.9,0.56125,2.2109595169063447,1.0901779302400194,0.385,3.161199516791711,1000
9-
LGBM,LGBM,experimental,True,1,0.95,0.6731666666666666,2.6345207582050456,1.0901779302400194,0.52,3.5381076690106985,1000
10-
LGBM,LGBM,experimental,True,4,0.9,0.5615,1.9055179156566338,0.9982970546992314,0.319,2.8114626499091226,1000
11-
LGBM,LGBM,experimental,True,4,0.95,0.661,2.2705646419765104,0.9982970546992314,0.438,3.1240482644060696,1000
12-
LGBM,LGBM,experimental,True,6,0.9,0.90175,1.9300617281970756,0.465536861894574,0.907,2.8427052038630234,1000
13-
LGBM,LGBM,experimental,True,6,0.95,0.9504166666666666,2.2998103984586393,0.465536861894574,0.954,3.161162346569528,1000
14-
LGBM,LGBM,observational,False,1,0.9,0.96075,3.860122273027192,0.7973124864002962,0.983,5.809738980637339,1000
15-
LGBM,LGBM,observational,False,1,0.95,0.9861666666666666,4.599619386848575,0.7973124864002962,0.995,6.430398563283054,1000
16-
LGBM,LGBM,observational,False,4,0.9,0.961,4.512624613227589,0.9164722703680156,0.971,6.6898615578032725,1000
17-
LGBM,LGBM,observational,False,4,0.95,0.9855,5.377123880662486,0.9164722703680156,0.98,7.432765016015873,1000
18-
LGBM,LGBM,observational,False,6,0.9,0.958,3.50270068952298,0.7100629357142844,0.984,5.273421616280179,1000
19-
LGBM,LGBM,observational,False,6,0.95,0.986,4.17372530151049,0.7100629357142844,0.997,5.841221698395343,1000
20-
LGBM,LGBM,observational,True,1,0.9,0.9343333333333333,2.712868127930892,0.5826992260811286,0.945,4.106276591884389,1000
21-
LGBM,LGBM,observational,True,1,0.95,0.9720833333333334,3.232581755864662,0.5826992260811286,0.977,4.540965421627881,1000
22-
LGBM,LGBM,observational,True,4,0.9,0.92525,3.156071825360632,0.6849012493398391,0.922,4.7143904406177395,1000
23-
LGBM,LGBM,observational,True,4,0.95,0.9654166666666666,3.7606915344759266,0.6849012493398391,0.961,5.2265508394561335,1000
24-
LGBM,LGBM,observational,True,6,0.9,0.94475,2.579379320454953,0.5423990875809755,0.961,3.9010126368155924,1000
25-
LGBM,LGBM,observational,True,6,0.95,0.978,3.073520031036937,0.5423990875809755,0.976,4.315622661457858,1000
26-
Linear,Linear,experimental,False,1,0.9,0.87675,0.5962556758101943,0.15540620935309896,0.835,0.9294555811504173,1000
27-
Linear,Linear,experimental,False,1,0.95,0.9341666666666666,0.7104824593611389,0.15540620935309896,0.903,1.0203476694408922,1000
28-
Linear,Linear,experimental,False,4,0.9,0.6788333333333334,1.9823719036462466,0.8343842929598351,0.543,2.876526568337002,1000
29-
Linear,Linear,experimental,False,4,0.95,0.7713333333333334,2.36214181702709,0.8343842929598351,0.647,3.2062768555810672,1000
30-
Linear,Linear,experimental,False,6,0.9,0.8975833333333334,2.001582926468975,0.4883176375232907,0.889,2.8947205466241517,1000
31-
Linear,Linear,experimental,False,6,0.95,0.951,2.385033162628771,0.4883176375232907,0.936,3.229856365862383,1000
32-
Linear,Linear,experimental,True,1,0.9,0.8783333333333334,0.5961879895205551,0.15516071674467652,0.835,0.9289596340870964,1000
33-
Linear,Linear,experimental,True,1,0.95,0.9336666666666666,0.7104018061724501,0.15516071674467652,0.897,1.0199615861026785,1000
34-
Linear,Linear,experimental,True,4,0.9,0.679,1.982325730340813,0.8350623844266716,0.542,2.874691539814855,1000
35-
Linear,Linear,experimental,True,4,0.95,0.7708333333333334,2.3620867981401727,0.8350623844266716,0.648,3.2065829645941943,1000
36-
Linear,Linear,experimental,True,6,0.9,0.8986666666666666,2.0014329000292035,0.4878977948334089,0.898,2.8958152919701714,1000
37-
Linear,Linear,experimental,True,6,0.95,0.9515833333333333,2.384854395099635,0.4878977948334089,0.944,3.230868272500581,1000
38-
Linear,Linear,observational,False,1,0.9,0.90175,0.686534548613581,0.16649618454495813,0.902,1.066351549510838,1000
39-
Linear,Linear,observational,False,1,0.95,0.9520833333333334,0.8180563713252403,0.16649618454495813,0.946,1.171229891264187,1000
40-
Linear,Linear,observational,False,4,0.9,0.79475,2.8873024002222816,0.9025556348916655,0.704,4.118610356886369,1000
41-
Linear,Linear,observational,False,4,0.95,0.867,3.4404330112947377,0.9025556348916655,0.806,4.6067910217812065,1000
42-
Linear,Linear,observational,False,6,0.9,0.90025,2.598132417226769,0.6748383969329592,0.907,3.730754168279962,1000
43-
Linear,Linear,observational,False,6,0.95,0.9518333333333334,3.0958657240938163,0.6748383969329592,0.95,4.165912075371038,1000
44-
Linear,Linear,observational,True,1,0.9,0.8975,0.6663493436025194,0.16422406525625022,0.884,1.0360859078980413,1000
45-
Linear,Linear,observational,True,1,0.95,0.9454166666666667,0.7940042160489305,0.16422406525625022,0.934,1.1384905364687135,1000
46-
Linear,Linear,observational,True,4,0.9,0.7818333333333334,2.749847403764977,0.8818152982040376,0.703,3.9307697380515574,1000
47-
Linear,Linear,observational,True,4,0.95,0.8599166666666667,3.2766452808018376,0.8818152982040376,0.797,4.397407804688746,1000
48-
Linear,Linear,observational,True,6,0.9,0.8920833333333333,2.4622968110379206,0.6399157390802319,0.887,3.543748460254503,1000
49-
Linear,Linear,observational,True,6,0.95,0.9465833333333333,2.9340076161223876,0.6399157390802319,0.944,3.9562585292222243,1000
2+
LGBM,LGBM,experimental,False,1,0.9,0.3929166666666667,0.6687029507520728,0.4569473540080381,0.066,1.0019963477166332,1000
3+
LGBM,LGBM,experimental,False,1,0.95,0.48991666666666667,0.7968087119452796,0.4569473540080381,0.131,1.1107772389821786,1000
4+
LGBM,LGBM,experimental,False,4,0.9,0.5314166666666666,0.5827863000707186,0.32927572636155183,0.206,0.8969333386170385,1000
5+
LGBM,LGBM,experimental,False,4,0.95,0.6208333333333333,0.6944327082397956,0.32927572636155183,0.298,0.9870085765972824,1000
6+
LGBM,LGBM,experimental,False,6,0.9,0.8985833333333334,0.5798291764546274,0.1415015522676616,0.902,0.8926496847901934,1000
7+
LGBM,LGBM,experimental,False,6,0.95,0.9505,0.6909090781183035,0.1415015522676616,0.94,0.9826119522997802,1000
8+
LGBM,LGBM,experimental,True,1,0.9,0.3985833333333333,0.6685234379502083,0.4558614977424509,0.073,1.0027027615662685,1000
9+
LGBM,LGBM,experimental,True,1,0.95,0.49141666666666667,0.7965948092486183,0.4558614977424509,0.14,1.1116972038295265,1000
10+
LGBM,LGBM,experimental,True,4,0.9,0.529,0.5827218897275354,0.3290643441251289,0.21,0.8975401350497161,1000
11+
LGBM,LGBM,experimental,True,4,0.95,0.6195833333333334,0.6943559585820737,0.3290643441251289,0.286,0.988165661809689,1000
12+
LGBM,LGBM,experimental,True,6,0.9,0.9005833333333334,0.5798357897778391,0.14062961792513812,0.903,0.8920158735259474,1000
13+
LGBM,LGBM,experimental,True,6,0.95,0.9526666666666667,0.6909169583789544,0.14062961792513812,0.946,0.9820497847451054,1000
14+
LGBM,LGBM,observational,False,1,0.9,0.91325,2.7335893497080668,0.7032100492915742,0.97,4.24966855110796,1000
15+
LGBM,LGBM,observational,False,1,0.95,0.9674166666666666,3.2572726145121886,0.7032100492915742,0.989,4.665238891989982,1000
16+
LGBM,LGBM,observational,False,4,0.9,0.9081666666666667,3.502596227758532,0.9581715859756315,0.97,5.396052160776311,1000
17+
LGBM,LGBM,observational,False,4,0.95,0.9659166666666666,4.173600827640763,0.9581715859756315,0.991,5.937512318038689,1000
18+
LGBM,LGBM,observational,False,6,0.9,0.9283333333333333,2.171679918677507,0.507690184177682,0.966,3.389992202359619,1000
19+
LGBM,LGBM,observational,False,6,0.95,0.9716666666666667,2.5877162300730143,0.507690184177682,0.986,3.7190046001183736,1000
20+
LGBM,LGBM,observational,True,1,0.9,0.9136666666666666,1.1116368737676119,0.26925529063955034,0.94,1.7337204258041814,1000
21+
LGBM,LGBM,observational,True,1,0.95,0.95975,1.3245970345150337,0.26925529063955034,0.979,1.901763207693331,1000
22+
LGBM,LGBM,observational,True,4,0.9,0.9205,1.415253033640148,0.329332847066125,0.923,2.1884940627932736,1000
23+
LGBM,LGBM,observational,True,4,0.95,0.964,1.6863780031823952,0.329332847066125,0.964,2.405714926928363,1000
24+
LGBM,LGBM,observational,True,6,0.9,0.9066666666666666,1.0240923600589003,0.2484225935648514,0.917,1.6017734165577624,1000
25+
LGBM,LGBM,observational,True,6,0.95,0.9585833333333333,1.220281312373145,0.2484225935648514,0.961,1.7565712317977673,1000
26+
Linear,Linear,experimental,False,1,0.9,0.8515,0.29472504253429116,0.0813922749648889,0.765,0.45946653721752106,1000
27+
Linear,Linear,experimental,False,1,0.95,0.9171666666666666,0.35118654890882184,0.0813922749648889,0.861,0.5047523635861321,1000
28+
Linear,Linear,experimental,False,4,0.9,0.30075,0.975812057155266,0.8193739142204116,0.036,1.4138427377009106,1000
29+
Linear,Linear,experimental,False,4,0.95,0.3815,1.1627517831169838,0.8193739142204116,0.067,1.57605877958281,1000
30+
Linear,Linear,experimental,False,6,0.9,0.89825,0.9829577849827824,0.24024745112751242,0.91,1.4202537375432176,1000
31+
Linear,Linear,experimental,False,6,0.95,0.9493333333333334,1.1712664429966075,0.24024745112751242,0.951,1.5831655301216463,1000
32+
Linear,Linear,experimental,True,1,0.9,0.8509166666666667,0.2947253078468344,0.08140709028680689,0.762,0.4593988323351278,1000
33+
Linear,Linear,experimental,True,1,0.95,0.91725,0.3511868650482161,0.08140709028680689,0.864,0.5042913385772815,1000
34+
Linear,Linear,experimental,True,4,0.9,0.3020833333333333,0.9757488994792876,0.819502522016252,0.039,1.412809617036458,1000
35+
Linear,Linear,experimental,True,4,0.95,0.3835,1.1626765261043008,0.819502522016252,0.065,1.5757772289647831,1000
36+
Linear,Linear,experimental,True,6,0.9,0.897,0.9830229866645744,0.24034574478609086,0.908,1.420394273430355,1000
37+
Linear,Linear,experimental,True,6,0.95,0.9499166666666666,1.171344135592441,0.24034574478609086,0.956,1.5848182567435658,1000
38+
Linear,Linear,observational,False,1,0.9,0.8973333333333333,0.3186240551118928,0.0778003450354372,0.89,0.49548723415593937,1000
39+
Linear,Linear,observational,False,1,0.95,0.9491666666666666,0.379663978845845,0.0778003450354372,0.946,0.5446256028987391,1000
40+
Linear,Linear,observational,False,4,0.9,0.4170833333333333,1.2358847166873828,0.8010746877401096,0.182,1.7662191422551763,1000
41+
Linear,Linear,observational,False,4,0.95,0.5161666666666667,1.4726474709121475,0.8010746877401096,0.274,1.9752694540622302,1000
42+
Linear,Linear,observational,False,6,0.9,0.8986666666666666,1.0267086469519957,0.25326747402342975,0.903,1.4829059870672159,1000
43+
Linear,Linear,observational,False,6,0.95,0.948,1.223398810489494,0.25326747402342975,0.958,1.654277564832196,1000
44+
Linear,Linear,observational,True,1,0.9,0.8955,0.316626811484083,0.07772309002866071,0.884,0.4926269679922508,1000
45+
Linear,Linear,observational,True,1,0.95,0.9470833333333334,0.37728411627648417,0.07772309002866071,0.941,0.5413306341435754,1000
46+
Linear,Linear,observational,True,4,0.9,0.4099166666666667,1.2341893457828894,0.801242331888525,0.186,1.7648003716701655,1000
47+
Linear,Linear,observational,True,4,0.95,0.5141666666666667,1.470627311878664,0.801242331888525,0.282,1.9736066482922592,1000
48+
Linear,Linear,observational,True,6,0.9,0.8946666666666666,1.0202628382324073,0.2515765758933131,0.89,1.4739361431017262,1000
49+
Linear,Linear,observational,True,6,0.95,0.9469166666666666,1.2157181556673127,0.2515765758933131,0.955,1.6441941273713205,1000

0 commit comments

Comments
 (0)