-
Notifications
You must be signed in to change notification settings - Fork 97
Description
I am running custom images through this model. All the images have been pre-proceed and cropped as to just include the human, and I've removed all annotation files and hardcoded the information that the annotation files used to provide. Also, I'm only processing images where there is a single person in-frame.
For some reason, half of the output predictions are just wrong--they are a mess. The other half of the output predictions look perfect. The wrong outputs are almost all identical with only slight, barely noticeable differences in joint positions. Also, If I feed in, say, a folder of 1000 images, the predictions on images 1-64 will be perfect, 65-128 will be wrong, 129-192 will be perfect, and 193-256 will be wrong, and this pattern continues. This pattern remains the same regardless of the input data.
Any idea why this is happening? I'm happy to provide more info about the issue. Thanks.