Skip to content

Commit 98ce79c

Browse files
committed
Restructure the project and rename it from intfold to intellifold
1 parent 6aaeb2d commit 98ce79c

File tree

98 files changed

+234
-234
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

98 files changed

+234
-234
lines changed

LICENSE

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -201,12 +201,12 @@
201201
See the License for the specific language governing permissions and
202202
limitations under the License.
203203

204-
Implementation of the `LayerNorm` operators (in intfold/openfold/utils/layer_norm/) referred to [OneFlow]
204+
Implementation of the `LayerNorm` operators (in intellifold/openfold/utils/layer_norm/) referred to [OneFlow]
205205
(https://github.com/Oneflow-Inc/oneflow) and [FastFold](https://github.com/hpcaitech/FastFold).
206-
Many components in `intfold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
206+
Many components in `intellifold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
207207
OneFlow, FastFold, and OpenFold are all licensed under the Apache License 2.0.
208208

209-
The inference data pipeline in `intfold/data/` is adapted from [Boltz-1](https://github.com/jwohlwend/boltz).
209+
The inference data pipeline in `intellifold/data/` is adapted from [Boltz-1](https://github.com/jwohlwend/boltz).
210210
Boltz-1 is licensed under the MIT License.
211211
The MIT License and copyright notice are included below.
212212

README.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
1-
![IntFold Cover](assets/intfold-cover.png)
1+
![intellifold Cover](assets/intellifold-cover.png)
22

3-
# IntFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction
4-
[![HuggingFace Models](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-yellow)](https://huggingface.co/intelligenAI/intfold)
5-
[![PyPI](https://img.shields.io/pypi/v/intfold)](https://pypi.org/project/intfold/)
3+
# IntelliFold: A Controllable Foundation Model for General and Specialized Biomolecular Structure Prediction
4+
[![HuggingFace Models](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-yellow)](https://huggingface.co/intelligenAI/intellifold)
5+
[![PyPI](https://img.shields.io/pypi/v/intellifold)](https://pypi.org/project/intellifold/)
66
[![License](https://img.shields.io/badge/license-Apache%202.0-blue)](LICENSE)
77
[![Email](https://img.shields.io/badge/Email-Contact-lightgrey?logo=gmail)](#contact-us)
88

@@ -13,17 +13,17 @@
1313
</div>
1414

1515

16-
![IntelliFold Model](assets/Intfold-Model-Arc.png)
16+
![IntelliFold Model](assets/Intellifold-Model-Arc.png)
1717

1818

1919
## 🚀 Quick Start
2020

2121
To quickly get started with IntelliFold, you can use the following commands:
2222
```bash
23-
# Install IntFold from PyPI
24-
pip install intfold
23+
# Install intellifold from PyPI
24+
pip install intellifold
2525
# Run inference with an example YAML file
26-
intfold predict ./examples/5S8I_A.yaml --out_dir ./output
26+
intellifold predict ./examples/5S8I_A.yaml --out_dir ./output
2727
```
2828

2929
## ⚙️ Installation
@@ -37,7 +37,7 @@ To more complete installation instructions and usage, please refer to the [Insta
3737

3838
2. **Run Prediction**:
3939
```bash
40-
intfold predict your_input.yaml --out_dir ./results
40+
intellifold predict your_input.yaml --out_dir ./results
4141
```
4242

4343
3. **Check Results**: Find predicted structures and confidence scores in the output directory, you can also check the section of **output format** in [output documentation](docs/input_yaml_format.md#output-format).
@@ -52,14 +52,14 @@ To comprehensively evaluate the performance of IntelliFold, we conducted a rigor
5252

5353
For more details on the benchmarking process and results, please refer to our [Technical Report](https://arxiv.org/abs/2507.02025).
5454

55-
![Benchmark Metrics](assets/intfold_metrics.png)
55+
![Benchmark Metrics](assets/intellifold_metrics.png)
5656

5757

5858
## 🌐 IntelliFold Server
5959

6060
**We highly recommend using the [IntelliFold Server](https://server.intfold.com) for the most accurate, complete, and convenient biomolecular structure predictions.** It requires no installation and provides an intuitive web interface to submit your sequences and visualize results directly in your browser. The server runs the **full, optimized, latest** IntelliFold implementation for optimal performance.
6161

62-
![IntelliFold Server](assets/intfold-server-screenshot.png)
62+
![IntelliFold Server](assets/intellifold-server-screenshot.png)
6363

6464

6565
## 📜 Citation
@@ -82,14 +82,14 @@ If you use IntelliFold in your research, please cite our paper:
8282
## 🔗 Acknowledgements
8383

8484
- The implementation of **fast layernorm operators** is inspired by [OneFlow](https://github.com/Oneflow-Inc/oneflow) and [FastFold](https://github.com/hpcaitech/FastFold), following [Protenix](https://github.com/bytedance/Protenix)'s usage.
85-
- Many components in `intfold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
85+
- Many components in `intellifold/openfold/` are adapted from [OpenFold](https://github.com/aqlaboratory/openfold), with substantial modifications and improvements by our team (except for the `LayerNorm` part).
8686
- This repository, the implementation of **Inference Data Pipeline**(Data/Feature Processing and MSA generation tasks) referred to [Boltz-1](https://github.com/jwohlwend/boltz), and modify some codes to adapt to the input of our model.
8787

8888

8989

9090
## ⚖️ License
9191

92-
The IntFold project, including code and model parameters, is made available under the [Apache 2.0 License](./LICENSE), it is free for both academic research and commercial use.
92+
The IntelliFold project, including code and model parameters, is made available under the [Apache 2.0 License](./LICENSE), it is free for both academic research and commercial use.
9393

9494
## 📬 Contact Us
9595

File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

docs/installation.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -3,48 +3,48 @@
33
44
1. **Clone the repository**
55
```bash
6-
git clone https://github.com/IntelliGen-AI/IntFold.git
7-
cd IntFold
6+
git clone https://github.com/IntelliGen-AI/IntelliFold.git
7+
cd IntelliFold
88
```
99

1010
2. **Create and activate the environment(recommended)**
1111
```bash
1212
conda env create -f environment.yaml
13-
conda activate intfold
13+
conda activate intellifold
1414
```
1515

1616
3. **Install the package**
1717
- From PyPI (recommended):
1818
```bash
19-
pip install intfold
19+
pip install intellifold
2020
```
2121
- From local wheel:
2222
```bash
23-
pip install pypi/intfold-0.1.3-py3-none-any.whl
23+
pip install pypi/intellifold-0.1.0-py3-none-any.whl
2424
```
2525
- Editable install:
2626
```bash
2727
pip install -e .
2828
```
2929

30-
4. **(Optional) Download IntFold Cache Data Manually**<br>
31-
By default, model weights and CCD data are downloaded automatically(the directory is `~/.intfold`) when you run the inference. But you can also download by yourself.
32-
To download manually from [Our HuggingFace Repository](https://huggingface.co/intelligenAI/intfold):
30+
4. **(Optional) Download IntelliFold Cache Data Manually**<br>
31+
By default, model weights and CCD data are downloaded automatically(the directory is `~/.intellifold`) when you run the inference. But you can also download by yourself.
32+
To download manually from [Our HuggingFace Repository](https://huggingface.co/intelligenAI/intellifold):
3333

3434
```bash
3535
mkdir -p cache_data
3636
cd cache_data
37-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/intfold_v0.1.0.pt
38-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/ccd.pkl
39-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/unique_protein_sequences.fasta
40-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/unique_nucleic_acid_sequences.fasta
41-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/protein_id_groups.json
42-
wget https://huggingface.co/intelligenAI/intfold/resolve/main/nucleic_acid_id_groups.json
37+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/intellifold_v0.1.0.pt
38+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/ccd.pkl
39+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/unique_protein_sequences.fasta
40+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/unique_nucleic_acid_sequences.fasta
41+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/protein_id_groups.json
42+
wget https://huggingface.co/intelligenAI/intellifold/resolve/main/nucleic_acid_id_groups.json
4343
```
4444
Your directory should look like:
4545
```
4646
cache_data/
47-
├── intfold_v0.1.0.pt
47+
├── intellifold_v0.1.0.pt
4848
├── ccd.pkl
4949
├── unique_protein_sequences.fasta
5050
├── unique_nucleic_acid_sequences.fasta

docs/usage.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,45 +1,45 @@
11
### Run with Command line
22

3-
If you set up `IntFold` by `pip`, you can run the following command to do model inference:
3+
If you set up `IntelliFold` by `pip`, you can run the following command to do model inference:
44

55
```bash
66

77
# run with example yaml, which contains precomputed msa files(.a3m or .csv). the default seed is 42.
88
## a3m MSA file type
9-
intfold predict ./examples/5S8I_A.yaml --out_dir ./output
9+
intellifold predict ./examples/5S8I_A.yaml --out_dir ./output
1010
## csv MSA file type
11-
intfold predict ./examples/7yds.yaml --out_dir ./output
11+
intellifold predict ./examples/7yds.yaml --out_dir ./output
1212

1313
# Predict with a directory of YAMLs
14-
intfold predict ./examples --out_dir ./output
14+
intellifold predict ./examples --out_dir ./output
1515

1616
# run with 5 seeds(mutiple seeds are splited them by comma) and 5 samples (the default parameters for AlphaFold3).
17-
intfold predict ./examples/5S8I_A.yaml --seed 42,43,44,45,46 --num_diffusion_samples 5 --out_dir ./output
17+
intellifold predict ./examples/5S8I_A.yaml --seed 42,43,44,45,46 --num_diffusion_samples 5 --out_dir ./output
1818

1919
# if the input yaml file do not contain precomputed msa paths, you can set --use_msa_server to search msa(need internet connection and would take some time)
2020
# and use greedy msa pairing strategy
2121
# and then predict
22-
intfold predict examples/examples_wo_msa/example_without_msa.yaml --out_dir ./output --seed 42,66 --use_msa_server --msa_pairing_strategy greedy
22+
intellifold predict examples/examples_wo_msa/example_without_msa.yaml --out_dir ./output --seed 42,66 --use_msa_server --msa_pairing_strategy greedy
2323

2424
# only run the data processing step, and not run the model.
25-
intfold predict ./examples/5S8I_A.yaml --out_dir ./output --only_run_data_process
25+
intellifold predict ./examples/5S8I_A.yaml --out_dir ./output --only_run_data_process
2626

2727
```
2828

2929
### Run with Bash Script
3030

31-
The aurguments is the same as `intfold predict`, and you can set the parameters in the script.
32-
you can get the help information by running `intfold predict --help` or `python run_intfold.py --help`
31+
The aurguments is the same as `intellifold predict`, and you can set the parameters in the script.
32+
you can get the help information by running `intellifold predict --help` or `python run_intellifold.py --help`
3333
```bash
3434
bash predict.sh
3535
## or
36-
## python run_intfold.py ....
36+
## python run_intellifold.py ....
3737
```
38-
Common arguments of this `scripts`/`intfold predict` are explained as follows:
38+
Common arguments of this `scripts`/`intellifold predict` are explained as follows:
3939
* `--out_dir` (`PATH`, default: `./`)
4040
The path where to save the predictions.
41-
* `--cache` (`PATH`, default: `~/.intfold`)
42-
The directory where to download the data and model. Will use environment variable `INTFOLD_CACHE` as an absolute path if set.
41+
* `--cache` (`PATH`, default: `~/.intellifold`)
42+
The directory where to download the data and model. Will use environment variable `INTELLIFOLD_CACHE` as an absolute path if set.
4343
* `--num_workers` (`INTEGER`, default: `4`)
4444
The number of dataloader workers to use for prediction.
4545
* `--precision` (`str`, default: `bf16`)

environment.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
name: intfold
1+
name: intellifold
22
channels:
33
- bioconda
44
- conda-forge
File renamed without changes.

0 commit comments

Comments
 (0)