Skip to content

朴素贝叶斯代码中的一个问题,个人看法。 #20

@mike96265

Description

@mike96265

作者在文中提到,将w展开为一个个独立特征,那么就可以将p(w/ci)展开为p(w0, w1, ... | ci)。那么在整个数据集中,应该有 p(w0_0) + p(w0_1) = 1。
但是在实际代码中,计算不同类别 p(w0) 处分母时,却加上了该数据行中单词出现的总次数,这里应该是有误的。如果将每个特征看做独立,这里应该只需要加1。

def trainNB0(trainMatrix, trainCategory):
    nTrainDocs = len(trainMatrix)
    nWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory) / float(nTrainDocs)
    p0Num = np.zeros(nWords)
    p1Num = np.zeros(nWords)
    p0Denom = 0
    p1Denom = 1
    for i in range(nTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            # 此处将分母加上了所有单词出现的次数
            # p1Denom += sum(trainMatrix[i])
            p1Denom += 1
        else:
            p0Num += trainMatrix[i]
            # p0Denom += sum(trainMatrix[i])
            p0Denom += 1
    p1Vect = p1Num / p1Denom
    p0Vect = p0Num / p0Denom
    return p0Vect, p1Vect, pAbusive

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions