|
| 1 | +function show(io::IO,d::Line) |
| 2 | + if d.center == angle(d) == 0 && d.α == d.β == -1. |
| 3 | + print(io,"ℝ") |
| 4 | + elseif d.α == d.β == -1. |
| 5 | + print(io,"Line(", d.center, ",", angle(d), ")") |
| 6 | + else |
| 7 | + print(io,"Line(", d.center, ",", angle(d), ",", d.α, ",", d.β, ")") |
| 8 | + end |
| 9 | +end |
| 10 | + |
| 11 | +function show(io::IO,d::Ray) |
| 12 | + if d.orientation && angle(d)==0 |
| 13 | + print(io,"【", d.center, ",∞❫") |
| 14 | + elseif d.orientation && angle(d)==1.0π |
| 15 | + print(io,"【", d.center, ",-∞❫") |
| 16 | + elseif d.orientation |
| 17 | + print(io,"【", d.center, ",exp(", angle(d), "im)∞❫") |
| 18 | + elseif !d.orientation && angle(d)==0 |
| 19 | + print(io,"❪∞,", d.center, "】") |
| 20 | + elseif !d.orientation && angle(d)==1.0π |
| 21 | + print(io,"❪-∞,", d.center, "】") |
| 22 | + else |
| 23 | + print(io,"❪exp(", angle(d), "im)∞,", d.center, "】") |
| 24 | + end |
| 25 | +end |
| 26 | + |
| 27 | +## Spaces |
| 28 | + |
| 29 | +function show(io::IO, S::Chebyshev) |
| 30 | + print(io, "Chebyshev(") |
| 31 | + show(io,domain(S)) |
| 32 | + print(io,")") |
| 33 | +end |
| 34 | + |
| 35 | +function show(io::IO, S::Ultraspherical) |
| 36 | + print(io,"Ultraspherical(", order(S), ",") |
| 37 | + show(io,domain(S)) |
| 38 | + print(io,")") |
| 39 | +end |
| 40 | + |
| 41 | +function show(io::IO,S::Jacobi) |
| 42 | + S.a == S.b == 0 ? print(io,"Legendre(") : print(io,"Jacobi(", S.b, ",", S.a,",") |
| 43 | + show(io,domain(S)) |
| 44 | + print(io,")") |
| 45 | +end |
| 46 | + |
| 47 | +show(io::IO, S::Chebyshev{<:ChebyshevInterval}) = print(io, "Chebyshev()") |
| 48 | +show(io::IO, S::Ultraspherical{<:Any,<:ChebyshevInterval}) = |
| 49 | + print(io, "Ultraspherical(", order(S), ")") |
| 50 | +show(io::IO, S::Jacobi{<:ChebyshevInterval}) = |
| 51 | + S.a == S.b == 0 ? print(io,"Legendre()") : print(io,"Jacobi(", S.b, ",", S.a,")") |
| 52 | + |
| 53 | +show(io::IO, S::NormalizedPolynomialSpace) = (print(io, "Normalized"); show(io, S.space)) |
0 commit comments