We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent c8465dd commit e133f71Copy full SHA for e133f71
.github/workflows/ci.yml
@@ -10,8 +10,7 @@ jobs:
10
fail-fast: false
11
matrix:
12
version:
13
- - '1.3'
14
- - '1'
+ - '1.5'
15
- '^1.6.0-0'
16
os:
17
- ubuntu-latest
Project.toml
@@ -21,19 +21,19 @@ Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
21
22
[compat]
23
AbstractFFTs = "0.5, 1"
24
-ApproxFunBase = "0.3, 0.4"
25
-BandedMatrices = "0.14, 0.15, 0.16"
26
-BlockArrays = "0.12.11, 0.13, 0.14"
27
-BlockBandedMatrices = "0.6, 0.7.1, 0.8, 0.9, 0.10"
28
-DomainSets = "0.3, 0.4"
+ApproxFunBase = "0.4"
+BandedMatrices = "0.16"
+BlockArrays = "0.14"
+BlockBandedMatrices = "0.10"
+DomainSets = "0.4"
29
FFTW = "1.1"
30
FastGaussQuadrature = "0.4"
31
-FastTransforms = "0.10, 0.11, 0.12"
32
-FillArrays = "0.8, 0.9.4, 0.10, 0.11"
+FastTransforms = "0.12"
+FillArrays = "0.11"
33
IntervalSets = "0.5"
34
Reexport = "0.2, 1"
35
-SpecialFunctions = "0.8, 0.9, 0.10, 1.0"
36
-julia = "1.3"
+SpecialFunctions = "0.10, 1.0"
+julia = "1.5"
37
38
[extras]
39
LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02"
src/ApproxFunOrthogonalPolynomials.jl
@@ -44,7 +44,7 @@ import ApproxFunBase: normalize!, flipsign, FiniteRange, Fun, MatrixFun, UnsetSp
44
domaintype, diagindshift, rangetype, weight, isapproxinteger, default_Dirichlet, scal!, dotu,
45
components, promoterangespace, promotedomainspace,
46
block, blockstart, blockstop, blocklengths, isblockbanded, pointscompatible, affine_setdiff, complexroots,
47
- ℓ⁰, recα, recβ, recγ, ∞, RectDomain
+ ℓ⁰, recα, recβ, recγ, ℵ₀, ∞, RectDomain
48
49
import DomainSets: Domain, indomain, UnionDomain, ProductDomain, FullSpace, Point, elements, DifferenceDomain,
50
Interval, ChebyshevInterval, boundary, ∂, rightendpoint, leftendpoint,
src/Spaces/Jacobi/JacobiOperators.jl
@@ -189,7 +189,7 @@ for (Func,Len,Sum) in ((:DefiniteIntegral,:complexlength,:sum),(:DefiniteLineInt
189
if domainspace(Σ).b == domainspace(Σ).a == 0
190
0,0 # first entry
191
else
192
- 0,∞
+ 0,ℵ₀
193
end
194
195
src/Spaces/Ultraspherical/DirichletSpace.jl
@@ -148,8 +148,8 @@ conversion_rule(b::ChebyshevDirichlet,a::Chebyshev)=b
148
149
150
bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{1,0,D,R},typeof(leftendpoint)}) where {D,R} = 0,0
151
-bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{1,0,D,R},typeof(rightendpoint)}) where {D,R} = 0,∞
152
-bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{0,1,D,R},typeof(leftendpoint)}) where {D,R} = 0,∞
+bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{1,0,D,R},typeof(rightendpoint)}) where {D,R} = 0,ℵ₀
+bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{0,1,D,R},typeof(leftendpoint)}) where {D,R} = 0,ℵ₀
153
bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{0,1,D,R},typeof(rightendpoint)}) where {D,R} = 0,0
154
bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{1,1,D,R},typeof(leftendpoint)}) where {D,R} = 0,1
155
bandwidths(B::ConcreteEvaluation{ChebyshevDirichlet{1,1,D,R},typeof(rightendpoint)}) where {D,R} = 0,1
src/Spaces/Ultraspherical/UltrasphericalOperators.jl
@@ -206,12 +206,12 @@ bandwidths(C::ConcreteConversion{<:Chebyshev,<:Ultraspherical{Int}}) = 0,2 # or
206
bandwidths(C::ConcreteConversion{<:Ultraspherical{Int},<:Ultraspherical{Int}}) = 0,2
207
208
bandwidths(C::ConcreteConversion{<:Chebyshev,<:Ultraspherical}) =
209
- 0,order(rangespace(C))==1 ? 2 : ∞
+ 0,order(rangespace(C))==1 ? 2 : ℵ₀
210
bandwidths(C::ConcreteConversion{<:Ultraspherical,<:Chebyshev}) =
211
- 0,order(domainspace(C))==1 ? 2 : ∞
+ 0,order(domainspace(C))==1 ? 2 : ℵ₀
212
213
bandwidths(C::ConcreteConversion{<:Ultraspherical,<:Ultraspherical}) =
214
- 0,order(domainspace(C))+1==order(rangespace(C)) ? 2 : ∞
+ 0,order(domainspace(C))+1==order(rangespace(C)) ? 2 : ℵ₀
215
216
Base.stride(C::ConcreteConversion{<:Chebyshev,<:Ultraspherical{Int}}) = 2
217
Base.stride(C::ConcreteConversion{<:Ultraspherical,<:Ultraspherical}) = 2
test/ODETest.jl
@@ -1,5 +1,5 @@
1
using ApproxFunOrthogonalPolynomials, ApproxFunBase, SpecialFunctions, Test, LazyArrays
2
-import ApproxFunBase: Multiplication, testraggedbelowoperator, testbandedoperator, interlace, ∞
+import ApproxFunBase: Multiplication, testraggedbelowoperator, testbandedoperator, interlace, ∞, ℵ₀
3
4
@testset "ODE" begin
5
@testset "Airy" begin
@@ -95,7 +95,7 @@ import ApproxFunBase: Multiplication, testraggedbelowoperator, testbandedoperato
95
96
Q,R=qr([B;D^2+I])
97
@test Q[1,1] == -0.5773502691896257
98
- @test size(Q') == (∞,∞)
+ @test size(Q') == (ℵ₀,ℵ₀)
99
u=R\(Q'*[[cos(-1.0),cos(1.0)],0.0])
100
101
@test u(0.) ≈ cos(0.0)
0 commit comments