Skip to content

transpose(::Basis) as opposed to adjoint(::Basis) #36

@jagot

Description

@jagot

For discretization of non-Hermitian operators in non-uniform finite-differences, it can be advantageous to work with separate left- and right-vectors, where the inner product is computed as transpose(left)*right (i.e. the first argument is not conjugated), instead of u'*S*u. The reason is that the metric S is dense, and it's more efficient to work with a biorthogonal set of vectors.

How should this be represented in the ContinuumArrays framework? I'm thinking something like this:

R = Basis(...)

u = ...
# The current way of computing the norm (inner product) would be
u'*R'*R*u
# or equivalently
dot(u, R'R, u) # R'R is dense

uc = (R'R)*u # Left vector
# The new way of computing norms/inner products
transpose(uc)*transpose(R)*R*u
# or equivalently
dotu(uc, u)

I am not entirely satisfied by this, ideally one would always write an inner product as dot(u, S, v), and this would figure out if u is a left-vector that should be transposed in the biorthogonal case or adjointed in the normal case.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions