Skip to content

Commit 14ff27c

Browse files
authored
Merge pull request #43 from MikaelSlevinsky/fbot/deps
Run femtocleaner
2 parents 3052caa + 9bfe462 commit 14ff27c

20 files changed

+206
-206
lines changed

src/ChebyshevJacobiPlan.jl

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ struct ChebyshevJacobiConstants{D,T}
88
K::Int
99
end
1010

11-
function ChebyshevJacobiConstants{T}(c::AbstractVector{T}::T::T;M::Int=7,D::Bool=FORWARD)
11+
function ChebyshevJacobiConstants(c::AbstractVector{T}::T::T;M::Int=7,D::Bool=FORWARD) where T
1212
N = length(c)-1
1313
if modαβ(α) == 0.5 && modαβ(β) == 0.5 return ChebyshevJacobiConstants{D,T}(α,β,M,N,0,zero(T),0) end
1414
if D == FORWARD
@@ -30,7 +30,7 @@ struct ChebyshevJacobiIndices
3030
j₂::Vector{Int}
3131
end
3232

33-
function ChebyshevJacobiIndices{D,T}::T::T,CJC::ChebyshevJacobiConstants{D,T},tempmindices::Vector{T},cfs::Matrix{T},tempcos::Vector{T},tempsin::Vector{T},tempcosβsinα::Vector{T})
33+
function ChebyshevJacobiIndices::T::T,CJC::ChebyshevJacobiConstants{D,T},tempmindices::Vector{T},cfs::Matrix{T},tempcos::Vector{T},tempsin::Vector{T},tempcosβsinα::Vector{T}) where {D,T}
3434
M,N,nM₀,αN,K = getconstants(CJC)
3535

3636
i₁,i₂ = zeros(Int,K+1),zeros(Int,K+1)
@@ -75,8 +75,8 @@ mutable struct ChebyshevJacobiPlan{D,T,DCT,DST,SA} <: FastTransformPlan{D,T}
7575
anαβ::Vector{T}
7676
c_cheb2::Vector{T}
7777
pr::Vector{T}
78-
function (::Type{ChebyshevJacobiPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T},CJI::ChebyshevJacobiIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T},cfs::Matrix{T}::Vector{T},tempcos::Vector{T},tempsin::Vector{T},
79-
tempcosβsinα::Vector{T},tempmindices::Vector{T},cnαβ::Vector{T},cnmαβ::Vector{T})
78+
function ChebyshevJacobiPlan{D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T},CJI::ChebyshevJacobiIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T},cfs::Matrix{T}::Vector{T},tempcos::Vector{T},tempsin::Vector{T},
79+
tempcosβsinα::Vector{T},tempmindices::Vector{T},cnαβ::Vector{T},cnmαβ::Vector{T}) where {D,T,DCT,DST,SA}
8080
P = new{D,T,DCT,DST,SA}()
8181
P.CJC = CJC
8282
P.CJI = CJI
@@ -97,23 +97,23 @@ mutable struct ChebyshevJacobiPlan{D,T,DCT,DST,SA} <: FastTransformPlan{D,T}
9797
P.cnmαβ = cnmαβ
9898
P
9999
end
100-
function (::Type{ChebyshevJacobiPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T},CJI::ChebyshevJacobiIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T},cfs::Matrix{T}::Vector{T},tempcos::Vector{T},tempsin::Vector{T},tempcosβsinα::Vector{T},tempmindices::Vector{T},cnαβ::Vector{T},cnmαβ::Vector{T},
101-
w::Vector{T},anαβ::Vector{T},c_cheb2::Vector{T},pr::Vector{T})
100+
function ChebyshevJacobiPlan{D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T},CJI::ChebyshevJacobiIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T},cfs::Matrix{T}::Vector{T},tempcos::Vector{T},tempsin::Vector{T},tempcosβsinα::Vector{T},tempmindices::Vector{T},cnαβ::Vector{T},cnmαβ::Vector{T},
101+
w::Vector{T},anαβ::Vector{T},c_cheb2::Vector{T},pr::Vector{T}) where {D,T,DCT,DST,SA}
102102
P = ChebyshevJacobiPlan{D,T,DCT,DST,SA}(CJC,CJI,p₁,p₂,rp,c₁,c₂,um,vm,cfs,θ,tempcos,tempsin,tempcosβsinα,tempmindices,cnαβ,cnmαβ)
103103
P.w = w
104104
P.anαβ = anαβ
105105
P.c_cheb2 = c_cheb2
106106
P.pr = pr
107107
P
108108
end
109-
function (::Type{ChebyshevJacobiPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T})
109+
function ChebyshevJacobiPlan{D,T,DCT,DST,SA}(CJC::ChebyshevJacobiConstants{D,T}) where {D,T,DCT,DST,SA}
110110
P = new{D,T,DCT,DST,SA}()
111111
P.CJC = CJC
112112
P
113113
end
114114
end
115115

116-
function ForwardChebyshevJacobiPlan{T}(c_jac::AbstractVector{T}::T::T,M::Int)
116+
function ForwardChebyshevJacobiPlan(c_jac::AbstractVector{T}::T::T,M::Int) where T
117117
# Initialize constants
118118
CJC = ChebyshevJacobiConstants(c_jac,α,β;M=M,D=FORWARD)
119119
if modαβ(α) == 0.5 && modαβ(β) == 0.5 return ChebyshevJacobiPlan{FORWARD,T,Any,Any,Any}(CJC) end
@@ -151,7 +151,7 @@ function ForwardChebyshevJacobiPlan{T}(c_jac::AbstractVector{T},α::T,β::T,M::I
151151
ChebyshevJacobiPlan{FORWARD,T,typeof(p₁),typeof(p₂),typeof(c₂)}(CJC,CJI,p₁,p₂,rp,c₁,c₂,um,vm,cfs,θ,tempcos,tempsin,tempcosβsinα,tempmindices,cnαβ,cnmαβ)
152152
end
153153

154-
function BackwardChebyshevJacobiPlan{T}(c_cheb::AbstractVector{T}::T::T,M::Int)
154+
function BackwardChebyshevJacobiPlan(c_cheb::AbstractVector{T}::T::T,M::Int) where T
155155
# Initialize constants
156156
CJC = ChebyshevJacobiConstants(c_cheb,α,β;M=M,D=BACKWARD)
157157
if modαβ(α) == 0.5 && modαβ(β) == 0.5 return ChebyshevJacobiPlan{BACKWARD,T,Any,Any,Any}(CJC) end

src/ChebyshevUltrasphericalPlan.jl

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ struct ChebyshevUltrasphericalConstants{D,T}
77
K::Int
88
end
99

10-
function ChebyshevUltrasphericalConstants{T}(c::AbstractVector{T}::T;M::Int=7,D::Bool=FORWARD)
10+
function ChebyshevUltrasphericalConstants(c::AbstractVector{T}::T;M::Int=7,D::Bool=FORWARD) where T
1111
N = length(c)-1
1212
if modλ(λ) == 0 return ChebyshevUltrasphericalConstants{D,T}(λ,M,N,0,zero(T),0) end
1313
λm = modλ(λ)
@@ -30,7 +30,7 @@ struct ChebyshevUltrasphericalIndices
3030
j₂::Vector{Int}
3131
end
3232

33-
function ChebyshevUltrasphericalIndices{D,T}::T,CUC::ChebyshevUltrasphericalConstants{D,T},tempmindices::Vector{T},tempsin::Vector{T},tempsinλ::Vector{T})
33+
function ChebyshevUltrasphericalIndices::T,CUC::ChebyshevUltrasphericalConstants{D,T},tempmindices::Vector{T},tempsin::Vector{T},tempsinλ::Vector{T}) where {D,T}
3434
M,N,nM₀,αN,K = getconstants(CUC)
3535

3636
i₁,i₂ = zeros(Int,K+1),zeros(Int,K+1)
@@ -75,7 +75,7 @@ mutable struct ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA} <: FastTransformPlan{
7575
anλ::Vector{T}
7676
c_cheb2::Vector{T}
7777
pr::Vector{T}
78-
function (::Type{ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T},CUI::ChebyshevUltrasphericalIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T}::Vector{T},tempsin::Vector{T},tempsin2::Vector{T},tempsinλ::Vector{T},tempsinλm::Vector{T},tempmindices::Vector{T},cnλ::Vector{T},cnmλ::Vector{T})
78+
function ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T},CUI::ChebyshevUltrasphericalIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T}::Vector{T},tempsin::Vector{T},tempsin2::Vector{T},tempsinλ::Vector{T},tempsinλm::Vector{T},tempmindices::Vector{T},cnλ::Vector{T},cnmλ::Vector{T}) where {D,T,DCT,DST,SA}
7979
P = new{D,T,DCT,DST,SA}()
8080
P.CUC = CUC
8181
P.CUI = CUI
@@ -96,22 +96,22 @@ mutable struct ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA} <: FastTransformPlan{
9696
P.cnmλ = cnmλ
9797
P
9898
end
99-
function (::Type{ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T},CUI::ChebyshevUltrasphericalIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T}::Vector{T},tempsin::Vector{T},tempsin2::Vector{T},tempsinλ::Vector{T},tempsinλm::Vector{T},tempmindices::Vector{T},cnλ::Vector{T},cnmλ::Vector{T},w::Vector{T},anλ::Vector{T},c_cheb2::Vector{T},pr::Vector{T})
99+
function ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T},CUI::ChebyshevUltrasphericalIndices,p₁::DCT,p₂::DST,rp::RecurrencePlan{T},c₁::Vector{T},c₂::SA,um::Vector{T},vm::Vector{T}::Vector{T},tempsin::Vector{T},tempsin2::Vector{T},tempsinλ::Vector{T},tempsinλm::Vector{T},tempmindices::Vector{T},cnλ::Vector{T},cnmλ::Vector{T},w::Vector{T},anλ::Vector{T},c_cheb2::Vector{T},pr::Vector{T}) where {D,T,DCT,DST,SA}
100100
P = ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}(CUC,CUI,p₁,p₂,rp,c₁,c₂,um,vm,θ,tempsin,tempsin2,tempsinλ,tempsinλm,tempmindices,cnλ,cnmλ)
101101
P.w = w
102102
P.anλ = anλ
103103
P.c_cheb2 = c_cheb2
104104
P.pr = pr
105105
P
106106
end
107-
function (::Type{ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}}){D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T})
107+
function ChebyshevUltrasphericalPlan{D,T,DCT,DST,SA}(CUC::ChebyshevUltrasphericalConstants{D,T}) where {D,T,DCT,DST,SA}
108108
P = new{D,T,DCT,DST,SA}()
109109
P.CUC = CUC
110110
P
111111
end
112112
end
113113

114-
function ForwardChebyshevUltrasphericalPlan{T}(c_ultra::AbstractVector{T}::T,M::Int)
114+
function ForwardChebyshevUltrasphericalPlan(c_ultra::AbstractVector{T}::T,M::Int) where T
115115
# Initialize constants
116116
CUC = ChebyshevUltrasphericalConstants(c_ultra,λ;M=M,D=FORWARD)
117117
if modλ(λ) == 0 return ChebyshevUltrasphericalPlan{FORWARD,T,Any,Any,Any}(CUC) end
@@ -148,7 +148,7 @@ function ForwardChebyshevUltrasphericalPlan{T}(c_ultra::AbstractVector{T},λ::T,
148148
ChebyshevUltrasphericalPlan{FORWARD,T,typeof(p₁),typeof(p₂),typeof(c₂)}(CUC,CUI,p₁,p₂,rp,c₁,c₂,um,vm,θ,tempsin,tempsin2,tempsinλ,tempsinλm,tempmindices,cnλ,cnmλ)
149149
end
150150

151-
function BackwardChebyshevUltrasphericalPlan{T}(c_ultra::AbstractVector{T}::T,M::Int)
151+
function BackwardChebyshevUltrasphericalPlan(c_ultra::AbstractVector{T}::T,M::Int) where T
152152
# Initialize constants
153153
CUC = ChebyshevUltrasphericalConstants(c_ultra,λ;M=M,D=BACKWARD)
154154
if modλ(λ) == 0 return ChebyshevUltrasphericalPlan{BACKWARD,T,Any,Any,Any}(CUC) end

src/PaduaTransform.jl

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -7,13 +7,13 @@ struct IPaduaTransformPlan{lex,IDCTPLAN,T}
77
idctplan::IDCTPLAN
88
end
99

10-
IPaduaTransformPlan{T,lex}(cfsmat::Matrix{T},idctplan,::Type{Val{lex}}) =
10+
IPaduaTransformPlan(cfsmat::Matrix{T},idctplan,::Type{Val{lex}}) where {T,lex} =
1111
IPaduaTransformPlan{lex,typeof(idctplan),T}(cfsmat,idctplan)
1212

1313
doc"""
1414
Pre-plan an Inverse Padua Transform.
1515
"""
16-
function plan_ipaduatransform!{T}(::Type{T},N::Integer,lex)
16+
function plan_ipaduatransform!(::Type{T},N::Integer,lex) where T
1717
n=Int(cld(-3+sqrt(1+8N),2))
1818
if N div((n+1)*(n+2),2)
1919
error("Padua transforms can only be applied to vectors of length (n+1)*(n+2)/2.")
@@ -22,10 +22,10 @@ function plan_ipaduatransform!{T}(::Type{T},N::Integer,lex)
2222
end
2323

2424

25-
plan_ipaduatransform!{T}(::Type{T},N::Integer) = plan_ipaduatransform!(T,N,Val{true})
26-
plan_ipaduatransform!{T}(v::AbstractVector{T},lex...) = plan_ipaduatransform!(eltype(v),length(v),lex...)
25+
plan_ipaduatransform!(::Type{T},N::Integer) where {T} = plan_ipaduatransform!(T,N,Val{true})
26+
plan_ipaduatransform!(v::AbstractVector{T},lex...) where {T} = plan_ipaduatransform!(eltype(v),length(v),lex...)
2727

28-
function *{T}(P::IPaduaTransformPlan,v::AbstractVector{T})
28+
function *(P::IPaduaTransformPlan,v::AbstractVector{T}) where T
2929
cfsmat=trianglecfsmat(P,v)
3030
n,m=size(cfsmat)
3131
scale!(view(cfsmat,:,2:m-1),0.5)
@@ -108,24 +108,24 @@ struct PaduaTransformPlan{lex,DCTPLAN,T}
108108
dctplan::DCTPLAN
109109
end
110110

111-
PaduaTransformPlan{T,lex}(vals::Matrix{T},dctplan,::Type{Val{lex}}) =
111+
PaduaTransformPlan(vals::Matrix{T},dctplan,::Type{Val{lex}}) where {T,lex} =
112112
PaduaTransformPlan{lex,typeof(dctplan),T}(vals,dctplan)
113113

114114
doc"""
115115
Pre-plan a Padua Transform.
116116
"""
117-
function plan_paduatransform!{T}(::Type{T},N::Integer,lex)
117+
function plan_paduatransform!(::Type{T},N::Integer,lex) where T
118118
n=Int(cld(-3+sqrt(1+8N),2))
119119
if N  ((n+1)*(n+2))÷2
120120
error("Padua transforms can only be applied to vectors of length (n+1)*(n+2)/2.")
121121
end
122122
PaduaTransformPlan(Array{T}(n+2,n+1),FFTW.plan_r2r!(Array{T}(n+2,n+1),FFTW.REDFT00),lex)
123123
end
124124

125-
plan_paduatransform!{T}(::Type{T},N::Integer) = plan_paduatransform!(T,N,Val{true})
126-
plan_paduatransform!{T}(v::AbstractVector{T},lex...) = plan_paduatransform!(eltype(v),length(v),lex...)
125+
plan_paduatransform!(::Type{T},N::Integer) where {T} = plan_paduatransform!(T,N,Val{true})
126+
plan_paduatransform!(v::AbstractVector{T},lex...) where {T} = plan_paduatransform!(eltype(v),length(v),lex...)
127127

128-
function *{T}(P::PaduaTransformPlan,v::AbstractVector{T})
128+
function *(P::PaduaTransformPlan,v::AbstractVector{T}) where T
129129
N=length(v)
130130
n=Int(cld(-3+sqrt(1+8N),2))
131131
vals=paduavalsmat(P,v)
@@ -197,7 +197,7 @@ end
197197
doc"""
198198
Returns coordinates of the ``(n+1)(n+2)/2`` Padua points.
199199
"""
200-
function paduapoints{T}(::Type{T},n::Integer)
200+
function paduapoints(::Type{T},n::Integer) where T
201201
N=div((n+1)*(n+2),2)
202202
MM=Matrix{T}(N,2)
203203
m=0

src/SphericalHarmonics/Butterfly.jl

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ end
2929

3030
size(B::Butterfly) = size(B, 1), size(B, 2)
3131

32-
function Butterfly{T}(A::AbstractMatrix{T}, L::Int; isorthogonal::Bool = false, opts...)
32+
function Butterfly(A::AbstractMatrix{T}, L::Int; isorthogonal::Bool = false, opts...) where T
3333
m, n = size(A)
3434
tL = 2^L
3535

@@ -177,7 +177,7 @@ Ac_mul_B!(y::AbstractVector, A::ColPerm, x::AbstractVector, jstart::Int) = At_mu
177177

178178
# Fast A_mul_B!, At_mul_B!, and Ac_mul_B! for an ID. These overwrite the output.
179179

180-
function A_mul_B!{T}(y::AbstractVecOrMat{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVecOrMat{T}, istart::Int, jstart::Int)
180+
function A_mul_B!(y::AbstractVecOrMat{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVecOrMat{T}, istart::Int, jstart::Int) where T
181181
k, n = size(A)
182182
At_mul_B!(P, x, jstart)
183183
copy!(y, istart, x, jstart, k)
@@ -186,7 +186,7 @@ function A_mul_B!{T}(y::AbstractVecOrMat{T}, A::IDPackedV{T}, P::ColumnPermutati
186186
y
187187
end
188188

189-
function A_mul_B!{T}(y::AbstractVector{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVector{T}, temp::AbstractVector{T}, istart::Int, jstart::Int)
189+
function A_mul_B!(y::AbstractVector{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVector{T}, temp::AbstractVector{T}, istart::Int, jstart::Int) where T
190190
k, n = size(A)
191191
At_mul_B!(temp, P, x, jstart)
192192
copy!(y, istart, temp, jstart, k)
@@ -196,15 +196,15 @@ end
196196

197197
for f! in (:At_mul_B!, :Ac_mul_B!)
198198
@eval begin
199-
function $f!{T}(y::AbstractVecOrMat{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVecOrMat{T}, istart::Int, jstart::Int)
199+
function $f!(y::AbstractVecOrMat{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVecOrMat{T}, istart::Int, jstart::Int) where T
200200
k, n = size(A)
201201
copy!(y, istart, x, jstart, k)
202202
$f!(y, A.T, x, istart+k, jstart)
203203
A_mul_B!(P, y, istart)
204204
y
205205
end
206206

207-
function $f!{T}(y::AbstractVector{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVector{T}, temp::AbstractVector{T}, istart::Int, jstart::Int)
207+
function $f!(y::AbstractVector{T}, A::IDPackedV{T}, P::ColumnPermutation, x::AbstractVector{T}, temp::AbstractVector{T}, istart::Int, jstart::Int) where T
208208
k, n = size(A)
209209
copy!(temp, istart, x, jstart, k)
210210
$f!(temp, A.T, x, istart+k, jstart)
@@ -216,11 +216,11 @@ end
216216

217217
### A_mul_B!, At_mul_B!, and Ac_mul_B! for a Butterfly factorization.
218218

219-
Base.A_mul_B!{T}(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) = A_mul_B_col_J!(u, B, b, 1)
220-
Base.At_mul_B!{T}(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) = At_mul_B_col_J!(u, B, b, 1)
221-
Base.Ac_mul_B!{T}(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) = Ac_mul_B_col_J!(u, B, b, 1)
219+
Base.A_mul_B!(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) where {T} = A_mul_B_col_J!(u, B, b, 1)
220+
Base.At_mul_B!(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) where {T} = At_mul_B_col_J!(u, B, b, 1)
221+
Base.Ac_mul_B!(u::Vector{T}, B::Butterfly{T}, b::Vector{T}) where {T} = Ac_mul_B_col_J!(u, B, b, 1)
222222

223-
function A_mul_B_col_J!{T}(u::VecOrMat{T}, B::Butterfly{T}, b::VecOrMat{T}, J::Int)
223+
function A_mul_B_col_J!(u::VecOrMat{T}, B::Butterfly{T}, b::VecOrMat{T}, J::Int) where T
224224
L = length(B.factors) - 1
225225
tL = 2^L
226226

@@ -278,7 +278,7 @@ end
278278
for f! in (:At_mul_B!,:Ac_mul_B!)
279279
f_col_J! = Meta.parse(string(f!)[1:end-1]*"_col_J!")
280280
@eval begin
281-
function $f_col_J!{T}(u::VecOrMat{T}, B::Butterfly{T}, b::VecOrMat{T}, J::Int)
281+
function $f_col_J!(u::VecOrMat{T}, B::Butterfly{T}, b::VecOrMat{T}, J::Int) where T
282282
L = length(B.factors) - 1
283283
tL = 2^L
284284

src/SphericalHarmonics/SphericalHarmonics.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
@compat abstract type SphericalHarmonicPlan{T} end
1+
abstract type SphericalHarmonicPlan{T} end
22

33
function *(P::SphericalHarmonicPlan, X::AbstractMatrix)
44
A_mul_B!(zero(X), P, X)

src/TriangularHarmonics/TriangularHarmonics.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
@compat abstract type TriangularHarmonicPlan{T} end
1+
abstract type TriangularHarmonicPlan{T} end
22

33
function *(P::TriangularHarmonicPlan, X::AbstractMatrix)
44
A_mul_B!(zero(X), P, X)

src/cheb2jac.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
function cheb2jac{T<:AbstractFloat}(c_cheb::AbstractVector{T}::T::T,plan::ChebyshevJacobiPlan{BACKWARD,T})
1+
function cheb2jac(c_cheb::AbstractVector{T}::T::T,plan::ChebyshevJacobiPlan{BACKWARD,T}) where T<:AbstractFloat
22
M,N,nM₀,αN,K = getconstants(plan)
33
i₁,i₂,j₁,j₂ = getindices(plan)
44
p₁,p₂,rp,c₁,c₂,um,vm,cfs,θ,tempcos,tempsin,tempcosβsinα,tempmindices,cnαβ,cnmαβ,w,anαβ,c_cheb2,pr = getplan(plan)

src/cheb2ultra.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
function cheb2ultra{T<:AbstractFloat}(c_cheb::AbstractVector{T}::T,plan::ChebyshevUltrasphericalPlan{BACKWARD,T})
1+
function cheb2ultra(c_cheb::AbstractVector{T}::T,plan::ChebyshevUltrasphericalPlan{BACKWARD,T}) where T<:AbstractFloat
22
M,N,nM₀,αN,K = getconstants(plan)
33
i₁,i₂,j₁,j₂ = getindices(plan)
44
p₁,p₂,rp,c₁,c₂,um,vm,θ,tempsin,tempsin2,tempsinλ,tempsinλm,tempmindices,cnλ,cnmλ,w,anλ,c_cheb2,pr = getplan(plan)

src/cjt.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -91,15 +91,15 @@ plan_icjt(c::AbstractVector,λ;M::Int=7) = BackwardChebyshevUltrasphericalPlan(c
9191
for (op,plan_op,D) in ((:cjt,:plan_cjt,:FORWARD),(:icjt,:plan_icjt,:BACKWARD))
9292
@eval begin
9393
$op(c,λ) = $plan_op(c,λ)*c
94-
*{T<:AbstractFloat}(p::FastTransformPlan{$D,T},c::AbstractVector{T}) = $op(c,p)
95-
$plan_op{T<:AbstractFloat}(c::AbstractVector{Complex{T}},α,β;M::Int=7) = $plan_op(real(c),α,β;M=M)
96-
$plan_op{T<:AbstractFloat}(c::AbstractVector{Complex{T}},λ;M::Int=7) = $plan_op(real(c),λ;M=M)
94+
*(p::FastTransformPlan{$D,T},c::AbstractVector{T}) where {T<:AbstractFloat} = $op(c,p)
95+
$plan_op(c::AbstractVector{Complex{T}},α,β;M::Int=7) where {T<:AbstractFloat} = $plan_op(real(c),α,β;M=M)
96+
$plan_op(c::AbstractVector{Complex{T}},λ;M::Int=7) where {T<:AbstractFloat} = $plan_op(real(c),λ;M=M)
9797
$plan_op(c::AbstractMatrix,α,β;M::Int=7) = $plan_op(view(c,1:size(c,1)),α,β;M=M)
9898
$plan_op(c::AbstractMatrix,λ;M::Int=7) = $plan_op(view(c,1:size(c,1)),λ;M=M)
9999
end
100100
end
101101

102-
function *{D,T<:AbstractFloat}(p::FastTransformPlan{D,T},c::AbstractVector{Complex{T}})
102+
function *(p::FastTransformPlan{D,T},c::AbstractVector{Complex{T}}) where {D,T<:AbstractFloat}
103103
cr,ci = reim(c)
104104
complex.(p*cr,p*ci)
105105
end

0 commit comments

Comments
 (0)