Skip to content

Commit 24c613b

Browse files
fix typo
reference 18ba6ce and #40.
1 parent 18ba6ce commit 24c613b

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

src/SphericalHarmonics/SphericalHarmonics.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ doc"""
3232
Computes the bivariate Fourier series given by the spherical harmonic expansion:
3333
3434
```math
35-
{\rm SHT} : \sum_{\ell=0}^n\sum_{m=-\ell}^{\ell} f_{\ell}^m Y_{\ell}^m(\theta,\varphi) \to \sum_{\ell=0}^n\sum_{m=-n}^{n} g_{\ell}^m \left\{\begin{array}{ccc}\cos\ell\theta & {\rm for} & m{\rm~even}\\ \sin(\ell+1)\theta & {\rm for} & m{\rm~odd}\end{array}\right\}\times \sqrt{\frac{2-\delta_{m,0}}{\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.
35+
{\rm SHT} : \sum_{\ell=0}^n\sum_{m=-\ell}^{\ell} f_{\ell}^m Y_{\ell}^m(\theta,\varphi) \to \sum_{\ell=0}^n\sum_{m=-n}^{n} g_{\ell}^m \left\{\begin{array}{ccc}\cos\ell\theta & {\rm for} & m{\rm~even}\\ \sin(\ell+1)\theta & {\rm for} & m{\rm~odd}\end{array}\right\}\times \sqrt{\frac{2-\delta_{m,0}}{2\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.
3636
```
3737
3838
The spherical harmonic expansion coefficients are organized as follows:
@@ -66,7 +66,7 @@ doc"""
6666
Computes the spherical harmonic expansion given by the bivariate Fourier series:
6767
6868
```math
69-
{\rm iSHT} : \sum_{\ell=0}^n\sum_{m=-n}^{n} g_{\ell}^m \left\{\begin{array}{ccc}\cos\ell\theta & {\rm for} & m{\rm~even}\\ \sin(\ell+1)\theta & {\rm for} & m{\rm~odd}\end{array}\right\}\times \sqrt{\frac{2-\delta_{m,0}}{\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0,\end{array}\right. \to \sum_{\ell=0}^n\sum_{m=-\ell}^{\ell} f_{\ell}^m Y_{\ell}^m(\theta,\varphi).
69+
{\rm iSHT} : \sum_{\ell=0}^n\sum_{m=-n}^{n} g_{\ell}^m \left\{\begin{array}{ccc}\cos\ell\theta & {\rm for} & m{\rm~even}\\ \sin(\ell+1)\theta & {\rm for} & m{\rm~odd}\end{array}\right\}\times \sqrt{\frac{2-\delta_{m,0}}{2\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0,\end{array}\right. \to \sum_{\ell=0}^n\sum_{m=-\ell}^{\ell} f_{\ell}^m Y_{\ell}^m(\theta,\varphi).
7070
```
7171
7272
The spherical harmonic expansion coefficients are organized as follows:

src/SphericalHarmonics/sphfunctions.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ doc"""
9090
Pointwise evaluation of real orthonormal spherical harmonic:
9191
9292
```math
93-
Y_\ell^m(\theta,\varphi) = (-1)^{|m|}\sqrt{(\ell+\frac{1}{2})\frac{(\ell-|m|)!}{(\ell+|m|)!}} P_\ell^{|m|}(\cos\theta) \sqrt{\frac{2-\delta_{m,0}}{\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.
93+
Y_\ell^m(\theta,\varphi) = (-1)^{|m|}\sqrt{(\ell+\frac{1}{2})\frac{(\ell-|m|)!}{(\ell+|m|)!}} P_\ell^{|m|}(\cos\theta) \sqrt{\frac{2-\delta_{m,0}}{2\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.
9494
```
9595
"""
9696
sphevaluate(θ, φ, L, M) = sphevaluatepi/π, φ/π, L, M)
@@ -120,4 +120,4 @@ function sphevaluatepi(θ::Number, L::Integer, M::Integer)
120120
end
121121
end
122122

123-
sphevaluatepi::Number, M::Integer) = sqrt((two(φ)-δ(M, 0))/π)*(M 0 ? cospi(M*φ) : sinpi(-M*φ))
123+
sphevaluatepi::Number, M::Integer) = sqrt((two(φ)-δ(M, 0))/(two(φ)*π))*(M 0 ? cospi(M*φ) : sinpi(-M*φ))

0 commit comments

Comments
 (0)