@@ -26,6 +26,13 @@ using ClassicalOrthogonalPolynomials: affine
2626 @test complexlogkernel (exp .(x), 2 + im) ≈ sum (log .((2 + im) .- x) .* exp .(x))
2727 @test_throws ArgumentError complexlogkernel (Jacobi (0.1 ,0.2 ), 2 + im)
2828 end
29+
30+ @testset " endpoints" begin
31+ @test complexlogkernel (exp .(x), 1 ) ≈ logkernel (exp .(x), 1 ) ≈ - 1.9569548200977875
32+ @test real (complexlogkernel (exp .(x), - 1 + 0im )) ≈ logkernel (exp .(x), - 1 ) ≈ 0.27395419528475684
33+ @test complexlogkernel (exp .(x), - 1 + 0.0im ) ≈ 0.27395419528475684 + 7.38400687288264im
34+ @test complexlogkernel (exp .(x), - 1 - 0.0im ) ≈ 0.27395419528475684 - 7.38400687288264im
35+ end
2936end
3037
3138@testset " LogKernelPoint" begin
3744 @test L isa LogKernelPoint{Float64,ComplexF64,ComplexF64,Float64,ChebyshevInterval{Float64}}
3845 @test (L * wU)[1 : 5 ] ≈ [ - 1.2919202947616695 , - 0.20965486677056738 , 0.6799687631764493 , 0.13811497572177128 , - 0.2289481463304956 ]
3946
40- @test L * (wU / wU \ @. (exp (x) * sqrt (1 - x^ 2 ))) ≈ - 1.4812979070884382
47+ fU = wU / wU \ @. (exp (x) * sqrt (1 - x^ 2 ))
48+ @test L * fU ≈ logkernel (fU, z) ≈ - 1.4812979070884382
4149
4250 wT = Weighted (ChebyshevT ())
43- @test L * (wT / wT \ @. (exp (x) / sqrt (1 - x^ 2 ))) ≈ - 1.9619040529776954 # mathematica
51+ fT = (wT / wT \ @. (exp (x) / sqrt (1 - x^ 2 )))
52+ @test L * fT ≈ logkernel (fT, z) ≈ - 1.9619040529776954 # mathematica
4453 end
4554
4655 @testset " Real point" begin
0 commit comments