Skip to content

BigFloats give Float64 accuracy — doesn't use the precision of the arguments #240

@stevengj

Description

@stevengj

This is related to #98Float64 precision seems to be baked into the package, whereas it would be more flexible (and more Julian) to use the precision of the arguments. For example, using BigFloat in the following example only gives 16 digits of accuracy:

julia> using FiniteDifferences

julia> extrapolate_fdm(central_fdm(2, 1), sin, big"1.0")[1] - cos(big"1.0")
-6.71174699531887290713204926350530055924229547805016487900793424335727248883486e-17

In contrast, "manually" calling Richardson extrapolation with a 2nd-order finite-difference approximation gives 70 digits (in 10 iterations):

julia> using Richardson

julia> dsin,_ = extrapolate(big"0.1", rtol=0, power=2) do h
           @show Float64(h)
           (sin(1+h) - sin(1-h)) / 2h
       end
Float64(h) = 0.1
Float64(h) = 0.0125
Float64(h) = 0.0015625
Float64(h) = 0.0001953125
Float64(h) = 2.44140625e-5
Float64(h) = 3.0517578125e-6
Float64(h) = 3.814697265625e-7
Float64(h) = 4.76837158203125e-8
Float64(h) = 5.960464477539063e-9
Float64(h) = 7.450580596923829e-10
(0.5403023058681397174009366074429766037323104206179222276700972553811007395485809, 3.557003874037244232691736616015521320518299017661431723628543167235436096570656e-70)

julia> dsin - cos(big"1.0")
3.44774105579695699101361233110829910923644073773066771188994182638266121185316e-70

So, someplace in FiniteDifferences is either hard-coding a tolerance (rather than using eps(float(x))), or "contaminating" the calculation with an inexact Float64 literal.

cc @hammy4815

Metadata

Metadata

Assignees

No one assigned

    Labels

    help wantedExtra attention is needed

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions