@@ -25,7 +25,7 @@ function's documentation string.
2525[^Lorenz1963]: E. N. Lorenz, J. atmos. Sci. **20**, pp 130 (1963)
2626"""
2727function lorenz (u0= [0.0 , 10.0 , 0.0 ]; σ = 10.0 , ρ = 28.0 , β = 8 / 3 )
28- return CDS (lorenz_rule, u0, [σ, ρ, β])
28+ return CoupledODEs (lorenz_rule, u0, [σ, ρ, β])
2929end
3030const lorenz63 = lorenz
3131function lorenz_rule (u, p, t)
@@ -82,7 +82,7 @@ function's documentation string.
8282
8383"""
8484function chua (u0 = [0.7 , 0.0 , 0.0 ]; a = 15.6 , b = 25.58 , m0 = - 8 / 7 , m1 = - 5 / 7 )
85- return CDS (chua_rule, u0, [a, b, m0, m1], chua_jacob)
85+ return CoupledODEs (chua_rule, u0, [a, b, m0, m1], chua_jacob)
8686end
8787function chua_rule (u, p, t)
8888 @inbounds begin
@@ -133,7 +133,7 @@ function's documentation string.
133133[^Rössler1976]: O. E. Rössler, Phys. Lett. **57A**, pp 397 (1976)
134134"""
135135function roessler (u0= [1 , - 2 , 0.1 ]; a = 0.2 , b = 0.2 , c = 5.7 )
136- return CDS (roessler_rule, u0, [a, b, c], roessler_jacob)
136+ return CoupledODEs (roessler_rule, u0, [a, b, c], roessler_jacob)
137137end
138138function roessler_rule (u, p, t)
139139 @inbounds begin
@@ -181,7 +181,7 @@ function's documentation string.
181181"""
182182function double_pendulum (u0= [π/ 2 , 0 , 0 , 0.5 ];
183183 G= 10.0 , L1 = 1.0 , L2 = 1.0 , M1 = 1.0 , M2 = 1.0 )
184- return CDS (doublependulum_rule, u0, [G, L1, L2, M1, M2])
184+ return CoupledODEs (doublependulum_rule, u0, [G, L1, L2, M1, M2])
185185end
186186@inbounds function doublependulum_rule (u, p, t)
187187 G, L1, L2, M1, M2 = p
@@ -231,7 +231,7 @@ The function `Systems.henonheiles_ics(E, n)` generates a grid of
231231[^HénonHeiles1964]: Hénon, M. & Heiles, C., The Astronomical Journal **69**, pp 73–79 (1964)
232232"""
233233function henonheiles (u0= [0 , - 0.25 , 0.42081 , 0 ])
234- return CDS (henonheiles_rule, u0, nothing )
234+ return CoupledODEs (henonheiles_rule, u0, nothing )
235235end
236236@inbounds function henonheiles_rule (u, p, t)
237237 du1 = u[3 ]
@@ -299,7 +299,7 @@ The default initial condition is chaotic.
299299 **70**, pp 105 (2018)
300300"""
301301function qbh (u0= [0. , - 2.5830294658973876 , 1.3873470962626937 , - 4.743416490252585 ]; A= 1. , B= 0.55 , D= 0.4 )
302- return CDS (qrule, u0, [A, B, D])
302+ return CoupledODEs (qrule, u0, [A, B, D])
303303end
304304function qrule (z, p, t)
305305 @inbounds begin
329329function lorenz96 (N:: Int , u0 = range (0 ; length = N, step = 0.1 ); F= 0.01 )
330330 @assert N ≥ 4 " `N` must be at least 4"
331331 lor96 = Lorenz96 {N} () # create struct
332- return CDS (lor96, u0, [F])
332+ return CoupledODEs (lor96, u0, [F])
333333end
334334struct Lorenz96{N} end # Structure for size type
335335function (obj:: Lorenz96{N} )(dx, x, p, t) where {N}
@@ -361,7 +361,7 @@ function's documentation string.
361361function duffing (u0 = [0.1 , 0.25 ]; ω = 2.2 , f = 27.0 , d = 0.2 , β = 1 )
362362 J = zeros (eltype (u0), 2 , 2 )
363363 J[1 ,2 ] = 1
364- return CDS (duffing_rule, u0, [ω, f, d, β])
364+ return CoupledODEs (duffing_rule, u0, [ω, f, d, β])
365365end
366366@inbounds function duffing_rule (x, p, t)
367367 ω, f, d, β = p
@@ -382,7 +382,7 @@ Shinriki oscillator with all other parameters (besides `R1`) set to constants.
382382function shinriki (u0 = [- 2 , 0 , 0.2 ]; R1 = 22.0 )
383383 # # Jacobian caller for Shinriki:
384384 # shinriki_rule(::Type{Val{:jac}}, J, u, p, t) = (shi::Shinriki)(t, u, J)
385- return CDS (shinriki_rule, u0, [R1])
385+ return CoupledODEs (shinriki_rule, u0, [R1])
386386end
387387shinriki_voltage (V) = 2.295e-5 * (exp (3.0038 * V) - exp (- 3.0038 * V))
388388function shinriki_rule (u, p, t)
@@ -420,7 +420,7 @@ function's documentation string.
420420[^Gissinger2012]: C. Gissinger, Eur. Phys. J. B **85**, 4, pp 1-12 (2012)
421421"""
422422function gissinger (u0 = [3 , 0.5 , 1.5 ]; μ = 0.119 , ν = 0.1 , Γ = 0.9 )
423- return CDS (gissinger_rule, u0, [μ, ν, Γ], gissinger_jacob)
423+ return CoupledODEs (gissinger_rule, u0, [μ, ν, Γ], gissinger_jacob)
424424end
425425function gissinger_rule (u, p, t)
426426 μ, ν, Γ = p
@@ -453,7 +453,7 @@ reversal events by means of a double-disk dynamo system.
453453[^Rikitake1958]: T. Rikitake Math. Proc. Camb. Phil. Soc. **54**, pp 89–105, (1958)
454454"""
455455function rikitake (u0 = [1 , 0 , 0.6 ]; μ = 1.0 , α = 1.0 )
456- return CDS (rikitake_rule, u0, [μ, α], rikitake_jacob)
456+ return CoupledODEs (rikitake_rule, u0, [μ, α], rikitake_jacob)
457457end
458458function rikitake_rule (u, p, t)
459459 μ, α = p
@@ -500,7 +500,7 @@ See Chapter 4 of "Elegant Chaos" by J. C. Sprott. [^Sprott2010]
500500 Sprott, J. C. (2010). *Elegant chaos: algebraically simple chaotic flows*.
501501 World Scientific.
502502"""
503- nosehoover (u0 = [0 , 0.1 , 0 ]) = CDS (nosehoover_rule, u0, nothing , nosehoover_jacob)
503+ nosehoover (u0 = [0 , 0.1 , 0 ]) = CoupledODEs (nosehoover_rule, u0, nothing , nosehoover_jacob)
504504function nosehoover_rule (u, p, t)
505505 x,y,z = u
506506 xdot = y
@@ -549,7 +549,7 @@ diameter is 1.
549549"""
550550function antidots (u0 = [0.5 , 0.5 , 0.25 , 0.25 ];
551551 d0 = 0.5 , c = 0.2 , B = 1.0 )
552- return CDS (antidot_rule, u0, [B, d0, c], antidot_jacob)
552+ return CoupledODEs (antidot_rule, u0, [B, d0, c], antidot_jacob)
553553end
554554
555555function antidot_rule (u, p, t)
@@ -640,7 +640,7 @@ J. C. Sprott. [^Sprott2010]
640640 World Scientific.
641641"""
642642function ueda (u0 = [3.0 , 0 ]; k = 0.1 , B = 12.0 )
643- return CDS (ueda_rule, u0, [k, B], ueda_jacob)
643+ return CoupledODEs (ueda_rule, u0, [k, B], ueda_jacob)
644644end
645645function ueda_rule (u, p, t)
646646 x,y = u
@@ -1010,7 +1010,7 @@ In the original paper there were no parameters, which are added here for explora
10101010[^Sprott2014b]: J. C. Sprott. Physics Letters A, 378
10111011"""
10121012function sprott_dissipative_conservative (u0 = [1.0 , 0 , 0 ]; a = 2 , b = 1 , c = 1 )
1013- return CDS (
1013+ return CoupledODEs (
10141014 sprott_dissipative_conservative_f, u0, [a, b, c], sprott_dissipative_conservative_J
10151015 )
10161016end
@@ -1074,7 +1074,7 @@ bifurcation, which occurs close to `I = 9.5`.
10741074function hodgkinhuxley (u0= [- 60.0 , 0.0 , 0.0 , 0.0 ];
10751075 I = 12.0 , Vna = 50.0 , Vk = - 77.0 , Vl = - 54.4 , gna = 120.0 ,gk = 36.0 , gl = 0.3 )
10761076# In Ermentrout's & Abbott's books
1077- return CDS (hodgkinhuxley_rule, u0, [I, Vna, Vk, Vl, gna, gk, gl])
1077+ return CoupledODEs (hodgkinhuxley_rule, u0, [I, Vna, Vk, Vl, gna, gk, gl])
10781078end
10791079function hodgkinhuxley_rule (u, p, t)
10801080 @inbounds begin
@@ -1133,7 +1133,7 @@ oscillations. Setting `\\mu=8.53` generates chaotic oscillations.
11331133 The London, Edinburgh and Dublin Phil. Mag. & J. of Sci., 2(7), 978–992.
11341134"""
11351135function vanderpol (u0= [0.5 , 0.0 ]; μ= 1.5 , F= 1.2 , T= 10 )
1136- return CDS (vanderpol_rule, u0, [μ, F, T], vanderpol_jac)
1136+ return CoupledODEs (vanderpol_rule, u0, [μ, F, T], vanderpol_jac)
11371137end
11381138function vanderpol_rule (u, p, t)
11391139 @inbounds begin
@@ -1181,7 +1181,7 @@ oscillations.
11811181 https://mathworld.wolfram.com/Lotka-VolterraEquations.html
11821182"""
11831183function lotkavolterra (u0= [10.0 , 5.0 ]; α = 1.5 , β = 1 , δ= 1 , γ= 3 )
1184- return CDS (lotkavolterra_rule, u0, [α, β, δ, γ], lotkavolterra_jac)
1184+ return CoupledODEs (lotkavolterra_rule, u0, [α, β, δ, γ], lotkavolterra_jac)
11851185end
11861186function lotkavolterra_rule (u, p, t)
11871187 @inbounds begin
@@ -1227,7 +1227,7 @@ periodic bursting.
12271227 Proc. R. Soc. Lond. B 221, 87-102.
12281228"""
12291229function hindmarshrose (u0= [- 1.0 , 0.0 , 0.0 ]; a= 1 , b= 3 , c= 1 , d= 5 , r= 0.001 , s= 4 , xr= - 8 / 5 , I= 2.0 )
1230- return CDS (hindmarshrose_rule, u0, [a,b,c,d,r,s,xr, I], hindmarshrose_jac)
1230+ return CoupledODEs (hindmarshrose_rule, u0, [a,b,c,d,r,s,xr, I], hindmarshrose_jac)
12311231end
12321232function hindmarshrose_rule (u, p, t)
12331233 @inbounds begin
@@ -1271,7 +1271,7 @@ coupled bursting neurons", DOI:https://doi.org/10.1103/PhysRevE.97.062311.
12711271function hindmarshrose_two_coupled (u0= [0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 ];
12721272 a = 1.0 , b = 3.0 , d = 5.0 , r = 0.001 , s = 4.0 , xr = - 1.6 , I = 4.0 ,
12731273 k1 = - 0.17 , k2 = - 0.17 , k_el = 0.0 , xv = 2.0 )
1274- return CDS (hindmarshrose_coupled_rule, u0, [a, b, c, d, r, s, xr, I, k1, k2, k_el, xv])
1274+ return CoupledODEs (hindmarshrose_coupled_rule, u0, [a, b, c, d, r, s, xr, I, k1, k2, k_el, xv])
12751275end
12761276function hindmarshrose_coupled_rule (u, p, t)
12771277 function sigma (x)
@@ -1330,7 +1330,7 @@ radius `\\sqrt(\\mu)`.
13301330 Boulder, CO :Westview Press, a member of the Perseus Books Group (2015).
13311331"""
13321332function stuartlandau_oscillator (u0= [1.0 , 0.0 ]; μ= 1.0 , ω= 1.0 , b= 1 )
1333- return CDS (stuartlandau_rule, u0, [μ, ω, b], stuartlandau_jac)
1333+ return CoupledODEs (stuartlandau_rule, u0, [μ, ω, b], stuartlandau_jac)
13341334end
13351335function stuartlandau_rule (u, p, t)
13361336 @inbounds begin
@@ -1362,7 +1362,7 @@ The parameter container has the parameters in the same order as stated in this
13621362function's documentation string.
13631363"""
13641364function forced_pendulum (u0 = [0.1 , 0.25 ]; ω = 2.2 , f = 27.0 , d = 0.2 )
1365- return CDS (forced_pendulum_rule, u0, [ω, f, d])
1365+ return CoupledODEs (forced_pendulum_rule, u0, [ω, f, d])
13661366end
13671367@inbounds function forced_pendulum_rule (u, p, t)
13681368 ω = p[1 ]; F = p[2 ]; d = p[3 ]
@@ -1392,7 +1392,7 @@ of an attractor A there is a point of the basin of attraction of another attract
13921392function riddled_basins (u0= [0.5 , 0.6 , 0 , 0 ];
13931393 γ= 0.05 , x̄ = 1.9 , f₀= 2.3 , ω = 3.5 , x₀= 1.0 , y₀= 0.0
13941394 )
1395- return CDS (riddled_basins_rule, u0, [γ, x̄, f₀, ω, x₀, y₀])
1395+ return CoupledODEs (riddled_basins_rule, u0, [γ, x̄, f₀, ω, x₀, y₀])
13961396end
13971397function riddled_basins_rule (u, p, t)
13981398 @inbounds begin
@@ -1443,7 +1443,7 @@ function morris_lecar(u0=[0.1, 0.1];
14431443 I = 0.15 , V3 = 0.1 , V1 = - 0.00 , V2 = 0.15 , V4 = 0.1 ,
14441444 VCa = 1 , VL = - 0.5 , VK = - 0.7 , gCa = 1.2 , gK = 2 ,
14451445 gL = 0.5 , τ = 3 )
1446- return CDS (morris_lecar_rule, u0, [I, V3, V1, V2, V4, VCa, VL, VK, gCa, gK, gL, τ])
1446+ return CoupledODEs (morris_lecar_rule, u0, [I, V3, V1, V2, V4, VCa, VL, VK, gCa, gK, gL, τ])
14471447end
14481448
14491449@inbounds function morris_lecar_rule (u, p, t)
@@ -1483,7 +1483,7 @@ function sakarya(u0= [-2.8976045, 3.8877978, 3.07465];
14831483 b = 1 ,
14841484 m = 1
14851485)
1486- return CDS (sakarya_rule, u0, [a,b,m])
1486+ return CoupledODEs (sakarya_rule, u0, [a,b,m])
14871487end
14881488
14891489function sakarya_rule (u, p, t)
@@ -1526,7 +1526,7 @@ function lorenz_bounded(u0=[-13.284881, -12.444334, 34.188198];
15261526 rho = 28.0 ,
15271527 sigma = 10.0
15281528)
1529- return CDS (lorenzbounded_rule, u0, [beta,r,rho,sigma])
1529+ return CoupledODEs (lorenzbounded_rule, u0, [beta,r,rho,sigma])
15301530end
15311531
15321532function lorenzbounded_rule (u, p, t)
@@ -1561,7 +1561,7 @@ momenta [^Tufillaro1984].
15611561 Swinging Atwood's Machine. American Journal of Physics. 52 (10): 895--903.
15621562"""
15631563function swinging_atwood (u0= [0.113296 ,1.5707963267948966 ,0.10992 ,0.17747 ]; m1= 1.0 , m2= 4.5 )
1564- return CDS (swingingatwood_rule, u0, [m1, m2])
1564+ return CoupledODEs (swingingatwood_rule, u0, [m1, m2])
15651565end
15661566
15671567function swingingatwood_rule (u, p, t)
@@ -1608,7 +1608,7 @@ function guckenheimer_holmes(u0=[-0.55582369,0.05181624,0.37766104];
16081608 d = 1.6 ,
16091609 e = 1.7 ,
16101610 f = 0.44 )
1611- return CDS (guckenheimerholmes_rule, u0, [a,b,c,d,e,f])
1611+ return CoupledODEs (guckenheimerholmes_rule, u0, [a,b,c,d,e,f])
16121612end
16131613
16141614function guckenheimerholmes_rule (u, p, t)
@@ -1640,7 +1640,7 @@ An algebraically-simple chaotic system with quadratic nonlinearity [^Sprott2010]
16401640 World Scientific, 2010.
16411641"""
16421642function halvorsen (u0= [- 8.6807408 ,- 2.4741399 ,0.070775762 ]; a = 1.4 , b = 4.0 )
1643- return CDS (halvorsen_rule, u0, [a, b])
1643+ return CoupledODEs (halvorsen_rule, u0, [a, b])
16441644end
16451645
16461646function halvorsen_rule (u, p, t)
0 commit comments