@@ -1201,17 +1201,22 @@ k1 = -0.17, k2 = -0.17, k_el = 0.0, xv = 2.0)
12011201```
12021202```math
12031203\\ begin{aligned}
1204- \\ dot x_{i} = y_{i} + bx^{2}_{i} - ax^{3}_{i} - z_{i} + I - k_{i}(x_{i} - v_{s})\\ Gamma(x_{j}) + k(x_{j} - x_{i})\\\\
1205- \\ dot y_{i} = c - d x^{2}_{i} - y_{i}\\\\
1206- \\ dot z_{i} = r[s(x_{i} - x_{R}) - z_{i}]\\\\
1207- \\ i,j=1,2 (i\\ neq j).\\\\
1204+ \\ dot x_{i} &= y_{i} + bx^{2}_{i} - ax^{3}_{i} - z_{i} + I - k_{i}(x_{i} - v_{s})\\ Gamma(x_{j}) + k(x_{j} - x_{i})\\\\
1205+ \\ dot y_{i} &= c - d x^{2}_{i} - y_{i}\\\\
1206+ \\ dot z_{i} &= r[s(x_{i} - x_{R}) - z_{i}]\\\\
12081207\\ end{aligned}
12091208```
1209+ where ``i,j=1,2 (i\\ neq j)`` denote two oscillators.
12101210
12111211The two coupled Hindmarsh Rose element by chemical and electrical synapse.
1212- it is modelling the dynamics of a neuron's membrane potential.
1212+ It is modelling the dynamics of a neuron's membrane potential.
12131213The default parameter values are taken from article "Dragon-king-like extreme events in
1214- coupled bursting neurons", DOI:https://doi.org/10.1103/PhysRevE.97.062311.
1214+ coupled bursting neurons", from [^Mishra2018].
1215+
1216+ [^Mirshra2018]:
1217+ A. Mishra, S. Saha, M. Vigneshwaran, P. Pal, T. Kapitaniak, and S. K. Dana,
1218+ "Dragon-king-like extreme events in coupled bursting neurons",
1219+ Phys. Rev. E, vol. 97, no. 6, p. 062311, Jun. 2018, doi: 10.1103/PhysRevE.97.062311.
12151220"""
12161221function hindmarshrose_two_coupled (u0= [0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 ];
12171222 a = 1.0 , b = 3.0 , c= 1.0 , d = 5.0 , r = 0.001 , s = 4.0 , xr = - 1.6 , I = 4.0 ,
@@ -1366,14 +1371,15 @@ Pacific barnacle [^MorrisLecar1981]. Its evolution is given by:
13661371```math
13671372\\ begin{aligned}
13681373\\ dot{V} &= -g_{Ca} M(V) (V - V_{Ca}) - g_K N (V - V_K) - g_L (V - V_L) + I \\\\
1369- \\ dot{N} &= (-N + G(V)) / \t au \\\\
1374+ \\ dot{N} &= (-N + G(V)) / \\ tau \\\\
13701375\\ end{aligned}
13711376```
13721377with
13731378```math
13741379\\ begin{aligned}
1375- M(V) = 0.5 (1 + \\ tanh((x-V1)/V2)) \\\\
1376- G(V) = 0.5 (1 + \\ tanh((x-V3)/V4)) \\\\
1380+ M(V) &= 0.5 (1 + \\ tanh((x-V1)/V2)) \\\\
1381+ G(V) &= 0.5 (1 + \\ tanh((x-V3)/V4)) \\\\
1382+ \\ end{aligned}
13771383```
13781384
13791385[^IzhikevichBook]:
0 commit comments