Skip to content

Commit 9545119

Browse files
Refactor imports and improve setup functions in RegularizedProblems module
1 parent d3b3959 commit 9545119

File tree

2 files changed

+31
-6
lines changed

2 files changed

+31
-6
lines changed

src/RegularizedProblems.jl

Lines changed: 25 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,30 @@
11
module RegularizedProblems
22

3-
using LinearAlgebra, SparseArrays
4-
using Random
5-
using ManualNLPModels, NLPModels, ShiftedProximalOperators
6-
using Distributions, Noise, ProximalOperators
3+
import Base: /, convert
4+
5+
import Distributions
6+
using Distributions: MixtureModel, MvNormal, Uniform
7+
8+
import LinearAlgebra
9+
using LinearAlgebra: I, dot, mul!, norm, qr
10+
11+
import NLPModels
12+
using NLPModels:
13+
AbstractNLPModel, AbstractNLSModel, Counters, NLSCounters, get_nvar, grad!, obj
14+
15+
import ManualNLPModels
16+
using ManualNLPModels: NLPModel, NLSModel
17+
18+
import Noise
19+
using Noise: add_gauss
20+
21+
import ProximalOperators
22+
import ShiftedProximalOperators
23+
24+
import Random
25+
using Random: randperm
26+
27+
import SparseArrays
728

829
include("utils.jl")
930
include("types.jl")

src/testset_bpdn.jl

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,18 @@ export setup_bpdn_l0, setup_bpdn_l1, setup_bpdn_B0
33

44
function setup_bpdn_l0(args...; kwargs...)
55
model, nls_model, _ = bpdn_model(args...; kwargs...)
6-
λ = norm(grad(model, zeros(model.meta.nvar)), Inf) / 10
6+
y = similar(model.meta.x0)
7+
grad!(model, y, zeros(model.meta.nvar))
8+
λ = norm(y) / 10
79
h = ProximalOperators.NormL0(λ)
810
return RegularizedNLPModel(model, h), RegularizedNLSModel(nls_model, h)
911
end
1012

1113
function setup_bpdn_l1(args...; kwargs...)
1214
model, nls_model, _ = bpdn_model(args...; kwargs...)
13-
λ = norm(grad(model, zeros(model.meta.nvar)), Inf) / 10
15+
y = similar(model.meta.x0)
16+
grad!(model, y, zeros(model.meta.nvar))
17+
λ = norm(y) / 10
1418
h = ProximalOperators.NormL1(λ)
1519
return RegularizedNLPModel(model, h), RegularizedNLSModel(nls_model, h)
1620
end

0 commit comments

Comments
 (0)