|
110 | 110 | cbpp = dataset(:cbpp)
|
111 | 111 | gm2 = fit(MixedModel, first(gfms[:cbpp]), cbpp, Binomial(); wts=float(cbpp.hsz), progress=false, init_from_lmm=[:β, :θ])
|
112 | 112 | @test weights(gm2) == cbpp.hsz
|
113 |
| - @test deviance(gm2,true) ≈ 100.09585619892968 atol=0.0001 |
114 |
| - @test sum(abs2, gm2.u[1]) ≈ 9.723054788538546 atol=0.0001 |
115 |
| - @test logdet(gm2) ≈ 16.90105378801136 atol=0.001 |
| 113 | + @test deviance(gm2, true) ≈ 100.09585619892968 rtol=0.0001 |
| 114 | + @test sum(abs2, gm2.u[1]) ≈ 9.723054788538546 rtol=0.0001 |
| 115 | + @test logdet(gm2) ≈ 16.90105378801136 rtol=0.0001 |
116 | 116 | @test isapprox(sum(gm2.resp.devresid), 73.47174762237978, atol=0.001)
|
117 | 117 | @test isapprox(loglikelihood(gm2), -92.02628186840045, atol=0.001)
|
118 | 118 | @test !dispersion_parameter(gm2)
|
|
281 | 281 | form = @formula(recalled ~ serialpos + zerocorr(serialpos | subject) + (1 | subject & session))
|
282 | 282 | glmm = @test_logs((:warn, r"Evaluation at default initial parameter vector failed"),
|
283 | 283 | GeneralizedLinearMixedModel(form, df, Bernoulli()));
|
284 |
| - glmm.optsum.ftol_rel = 1e-7 |
285 |
| - fit!(glmm; init_from_lmm=[:β, :θ], fast=true, progress=false) |
286 |
| - @test deviance(glmm) ≈ 996.0402 atol=0.01 |
| 284 | + @test all(==(1e-8), glmm.optsum.initial) |
287 | 285 | end
|
0 commit comments