You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CONTENTS.md
+2Lines changed: 2 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,6 +15,7 @@
15
15
| [**CircleLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#circleloss) | [Circle Loss: A Unified Perspective of Pair Similarity Optimization](https://arxiv.org/pdf/2002.10857.pdf)
16
16
| [**ContrastiveLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#contrastiveloss) | [Dimensionality Reduction by Learning an Invariant Mapping](http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf)
17
17
| [**CosFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#cosfaceloss) | - [CosFace: Large Margin Cosine Loss for Deep Face Recognition](https://arxiv.org/pdf/1801.09414.pdf) <br/> - [Additive Margin Softmax for Face Verification](https://arxiv.org/pdf/1801.05599.pdf)
18
+
| [**DynamicSoftMarginLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#dynamicsoftmarginloss) | [Learning Local Descriptors With a CDF-Based Dynamic Soft Margin](https://openaccess.thecvf.com/content_ICCV_2019/papers/Zhang_Learning_Local_Descriptors_With_a_CDF-Based_Dynamic_Soft_Margin_ICCV_2019_paper.pdf)
18
19
| [**FastAPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#fastaploss) | [Deep Metric Learning to Rank](http://openaccess.thecvf.com/content_CVPR_2019/papers/Cakir_Deep_Metric_Learning_to_Rank_CVPR_2019_paper.pdf)
19
20
| [**GeneralizedLiftedStructureLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#generalizedliftedstructureloss) | [In Defense of the Triplet Loss for Person Re-Identification](https://arxiv.org/pdf/1703.07737.pdf)
20
21
| [**HistogramLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#histogramloss) | [Learning Deep Embeddings with Histogram Loss](https://arxiv.org/pdf/1611.00822.pdf)
@@ -33,6 +34,7 @@
33
34
| [**PNPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#pnploss) | [Rethinking the Optimization of Average Precision: Only Penalizing Negative Instances before Positive Ones is Enough](https://arxiv.org/pdf/2102.04640.pdf)
34
35
| [**ProxyAnchorLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#proxyanchorloss) | [Proxy Anchor Loss for Deep Metric Learning](https://arxiv.org/pdf/2003.13911.pdf)
35
36
| [**ProxyNCALoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#proxyncaloss) | [No Fuss Distance Metric Learning using Proxies](https://arxiv.org/pdf/1703.07464.pdf)
37
+
| [**RankedListLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#rankedlistloss) | [Ranked List Loss for Deep Metric Learning](https://arxiv.org/abs/1903.03238)
36
38
| [**SignalToNoiseRatioContrastiveLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#signaltonoiseratiocontrastiveloss) | [Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning](http://openaccess.thecvf.com/content_CVPR_2019/papers/Yuan_Signal-To-Noise_Ratio_A_Robust_Distance_Metric_for_Deep_Metric_Learning_CVPR_2019_paper.pdf)
37
39
| [**SoftTripleLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#softtripleloss) | [SoftTriple Loss: Deep Metric Learning Without Triplet Sampling](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf)
38
40
| [**SphereFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#spherefaceloss) | [SphereFace: Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/pdf/1704.08063.pdf)
- See the [release notes](https://github.com/KevinMusgrave/pytorch-metric-learning/releases/tag/v2.4.0).
25
+
- Thank you [domenicoMuscill0](https://github.com/domenicoMuscill0), [Puzer](https://github.com/Puzer), [interestingzhuo](https://github.com/interestingzhuo), and [GaetanLepage](https://github.com/GaetanLepage).
- Thank you [domenicoMuscill0](https://github.com/domenicoMuscill0).
24
30
25
-
**June 18**: v2.2.0
26
-
- Added [ManifoldLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#manifoldloss) and [P2SGradLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#p2sgradloss).
27
-
- Added a `symmetric` flag to [SelfSupervisedLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#selfsupervisedloss).
28
-
- See the [release notes](https://github.com/KevinMusgrave/pytorch-metric-learning/releases/tag/v2.2.0).
29
-
- Thank you [domenicoMuscill0](https://github.com/domenicoMuscill0).
30
-
31
-
32
31
## Documentation
33
32
-[**View the documentation here**](https://kevinmusgrave.github.io/pytorch-metric-learning/)
34
33
-[**View the installation instructions here**](https://github.com/KevinMusgrave/pytorch-metric-learning#installation)
@@ -227,7 +226,7 @@ Thanks to the contributors who made pull requests!
|[mlopezantequera](https://github.com/mlopezantequera)| - Made the [testers](https://kevinmusgrave.github.io/pytorch-metric-learning/testers) work on any combination of query and reference sets <br/> - Made [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) work with arbitrary label comparisons |
232
231
|[cwkeam](https://github.com/cwkeam)| - [SelfSupervisedLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#selfsupervisedloss) <br/> - [VICRegLoss](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#vicregloss) <br/> - Added mean reciprocal rank accuracy to [AccuracyCalculator](https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/) <br/> - BaseLossWrapper|
Copy file name to clipboardExpand all lines: docs/extend/losses.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -93,7 +93,7 @@ There are also a few functions in ```self.distance``` that provide some of this
93
93
94
94
## Using ```indices_tuple```
95
95
96
-
This is an optional argument passed in from the outside. (See the [overview](../../#using-losses-and-miners-in-your-training-loop) for an example.) It currently has 3 possible forms:
96
+
This is an optional argument passed in from the outside. (See the [overview](../index.md#using-losses-and-miners-in-your-training-loop) for an example.) It currently has 3 possible forms:
97
97
98
98
-```None```
99
99
- A tuple of size 4, representing the indices of mined pairs (anchors, positives, anchors, negatives)
Copy file name to clipboardExpand all lines: docs/index.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -13,7 +13,7 @@ This library contains 9 modules, each of which can be used independently within
13
13
## How loss functions work
14
14
15
15
### Using losses and miners in your training loop
16
-
Let’s initialize a plain [TripletMarginLoss](losses/#tripletmarginloss):
16
+
Let’s initialize a plain [TripletMarginLoss](losses.md#tripletmarginloss):
17
17
```python
18
18
from pytorch_metric_learning import losses
19
19
loss_func = losses.TripletMarginLoss()
@@ -95,8 +95,8 @@ If you're interested in [MoCo](https://arxiv.org/pdf/1911.05722.pdf)-style self-
95
95
96
96
## Highlights of the rest of the library
97
97
98
-
- For a convenient way to train your model, take a look at the [trainers](trainers).
99
-
- Want to test your model's accuracy on a dataset? Try the [testers](testers/).
98
+
- For a convenient way to train your model, take a look at the [trainers](trainers.md).
99
+
- Want to test your model's accuracy on a dataset? Try the [testers](testers.md).
100
100
- To compute the accuracy of an embedding space directly, use [AccuracyCalculator](accuracy_calculation.md).
101
101
102
102
If you're short of time and want a complete train/test workflow, check out the [example Google Colab notebooks](https://github.com/KevinMusgrave/pytorch-metric-learning/tree/master/examples).
0 commit comments