-
Notifications
You must be signed in to change notification settings - Fork 184
Open
Description
When using the following command to start a training task, the error is TypeError: h5py objects cannot be pickled
:
export CUDA_VISIBLE_DEVICES=0
export MUJOCO_EGL_DEVICE_ID=0
python libero/lifelong/main.py seed=0 benchmark_name=LIBERO_10 policy=bc_rnn_policy lifelong=base
according to issue #19, I comment part of code in libero/lifelong/main.py
as following:

Then, start the training task again, error occurs as shown in below:
Traceback (most recent call last):
File "libero/lifelong/main.py", line 272, in <module>
main()
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/main.py", line 90, in decorated_main
_run_hydra(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 389, in _run_hydra
_run_app(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 452, in _run_app
run_and_report(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 216, in run_and_report
raise ex
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 213, in run_and_report
return func()
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 453, in <lambda>
lambda: hydra.run(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 132, in run
_ = ret.return_value
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/core/utils.py", line 260, in return_value
raise self._return_value
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/core/utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "libero/lifelong/main.py", line 219, in main
s_fwd, l_fwd = algo.learn_one_task(
File "/root/workspace/LIBERO-master/libero/lifelong/algos/base.py", line 200, in learn_one_task
success_rate = evaluate_one_task_success(
File "/root/workspace/LIBERO-master/libero/lifelong/metric.py", line 112, in evaluate_one_task_success
env.reset()
File "/root/workspace/LIBERO-master/libero/libero/envs/venv.py", line 709, in reset
ret_list = [self.workers[i].recv() for i in id]
File "/root/workspace/LIBERO-master/libero/libero/envs/venv.py", line 709, in <listcomp>
ret_list = [self.workers[i].recv() for i in id]
File "/root/workspace/LIBERO-master/libero/libero/envs/venv.py", line 437, in recv
result = self.parent_remote.recv()
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/connection.py", line 414, in _recv_bytes
buf = self._recv(4)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
ConnectionResetError: [Errno 104] Connection reset by peer
Accoring to issue #3, add code in libero/lifelong/metric.py
:

HOWEVER, error occurs again after start training, which is same as the error at the beginning.
Traceback (most recent call last):
File "libero/lifelong/main.py", line 272, in <module>
main()
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/main.py", line 90, in decorated_main
_run_hydra(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 389, in _run_hydra
_run_app(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 452, in _run_app
run_and_report(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 216, in run_and_report
raise ex
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 213, in run_and_report
return func()
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/utils.py", line 453, in <lambda>
lambda: hydra.run(
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 132, in run
_ = ret.return_value
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/core/utils.py", line 260, in return_value
raise self._return_value
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/hydra/core/utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "libero/lifelong/main.py", line 228, in main
L = evaluate_loss(cfg, algo, benchmark, datasets[: i + 1])
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/root/workspace/LIBERO-master/libero/lifelong/metric.py", line 216, in evaluate_loss
for data in dataloader:
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 440, in __iter__
return self._get_iterator()
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 388, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1038, in __init__
w.start()
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/context.py", line 284, in _Popen
return Popen(process_obj)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__
super().__init__(process_obj)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launch
reduction.dump(process_obj, fp)
File "/root/miniforge/envs/libero/lib/python3.8/multiprocessing/reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
File "/root/miniforge/envs/libero/lib/python3.8/site-packages/h5py/_hl/base.py", line 370, in __getnewargs__
raise TypeError("h5py objects cannot be pickled")
TypeError: h5py objects cannot be pickled
I'm curious to know where the problem is and what needs to be done to resolve it so that I can complete this training task.
Metadata
Metadata
Assignees
Labels
No labels