diff --git a/.clang-format b/.clang-format index 45232b80e..47d96b6b4 100644 --- a/.clang-format +++ b/.clang-format @@ -22,8 +22,8 @@ AllowShortIfStatementsOnASingleLine: Never AllowShortLambdasOnASingleLine: Inline AllowShortLoopsOnASingleLine: false AlwaysBreakBeforeMultilineStrings: true -BinPackArguments: true -BinPackParameters: true # OnePerLine +BinPackArguments: false +BinPackParameters: false # OnePerLine BitFieldColonSpacing: Both BreakBeforeBraces: Custom # Attach BraceWrapping: @@ -70,15 +70,18 @@ ExperimentalAutoDetectBinPacking: false FixNamespaceComments: true IncludeBlocks: Regroup IncludeCategories: - - Regex: '^<.*\.h>' + - Regex: '".*"' Priority: 1 SortPriority: 0 - - Regex: '^<.*' + - Regex: '^<.*\.h>' Priority: 2 SortPriority: 0 - - Regex: '.*' + - Regex: '^<.*' Priority: 3 SortPriority: 0 + - Regex: '.*' + Priority: 4 + SortPriority: 0 IncludeIsMainRegex: '([-_](test|unittest))?$' IncludeIsMainSourceRegex: '' IndentAccessModifiers: false diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index 6e8050a49..651a54db4 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -47,6 +47,7 @@ let inherit (lib) cmakeBool cmakeFeature + optionalAttrs optionals strings ; @@ -197,7 +198,7 @@ effectiveStdenv.mkDerivation (finalAttrs: { ]; # Environment variables needed for ROCm - env = optionals useRocm { + env = optionalAttrs useRocm { ROCM_PATH = "${rocmPackages.clr}"; HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode"; }; diff --git a/.github/workflows/build-linux-cross.yml b/.github/workflows/build-linux-cross.yml index 7cfc82ba4..04ad187d3 100644 --- a/.github/workflows/build-linux-cross.yml +++ b/.github/workflows/build-linux-cross.yml @@ -48,98 +48,98 @@ jobs: cmake --build build --config Release -j $(nproc) - ubuntu-24-riscv64-vulkan-cross: - runs-on: ubuntu-24.04 - - steps: - - uses: actions/checkout@v4 - - name: Setup Riscv - run: | - sudo dpkg --add-architecture riscv64 - - # Add arch-specific repositories for non-amd64 architectures - cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list - deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe - deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe - deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe - deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe - EOF - - sudo apt-get update || true ;# Prevent failure due to missing URLs. - - sudo apt-get install -y --no-install-recommends \ - build-essential \ - glslc \ - gcc-14-riscv64-linux-gnu \ - g++-14-riscv64-linux-gnu \ - libvulkan-dev:riscv64 - - - name: Build - run: | - cmake -B build -DLLAMA_CURL=OFF \ - -DCMAKE_BUILD_TYPE=Release \ - -DGGML_VULKAN=ON \ - -DGGML_OPENMP=OFF \ - -DLLAMA_BUILD_EXAMPLES=ON \ - -DLLAMA_BUILD_TOOLS=ON \ - -DLLAMA_BUILD_TESTS=OFF \ - -DCMAKE_SYSTEM_NAME=Linux \ - -DCMAKE_SYSTEM_PROCESSOR=riscv64 \ - -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \ - -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \ - -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ - -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \ - -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ - -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ - -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH - - cmake --build build --config Release -j $(nproc) - - ubuntu-24-arm64-vulkan-cross: - runs-on: ubuntu-24.04 - - steps: - - uses: actions/checkout@v4 - - name: Setup Arm64 - run: | - sudo dpkg --add-architecture arm64 - - # Add arch-specific repositories for non-amd64 architectures - cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list - deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe - deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe - deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe - deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe - EOF - - sudo apt-get update || true ;# Prevent failure due to missing URLs. - - sudo apt-get install -y --no-install-recommends \ - build-essential \ - glslc \ - crossbuild-essential-arm64 \ - libvulkan-dev:arm64 - - - name: Build - run: | - cmake -B build -DLLAMA_CURL=OFF \ - -DCMAKE_BUILD_TYPE=Release \ - -DGGML_VULKAN=ON \ - -DGGML_OPENMP=OFF \ - -DLLAMA_BUILD_EXAMPLES=ON \ - -DLLAMA_BUILD_TOOLS=ON \ - -DLLAMA_BUILD_TESTS=OFF \ - -DCMAKE_SYSTEM_NAME=Linux \ - -DCMAKE_SYSTEM_PROCESSOR=aarch64 \ - -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \ - -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \ - -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ - -DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \ - -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ - -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ - -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH - - cmake --build build --config Release -j $(nproc) + # ubuntu-24-riscv64-vulkan-cross: + # runs-on: ubuntu-24.04 + + # steps: + # - uses: actions/checkout@v4 + # - name: Setup Riscv + # run: | + # sudo dpkg --add-architecture riscv64 + + # # Add arch-specific repositories for non-amd64 architectures + # cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list + # deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe + # deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe + # deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe + # deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe + # EOF + + # sudo apt-get update || true ;# Prevent failure due to missing URLs. + + # sudo apt-get install -y --no-install-recommends \ + # build-essential \ + # glslc \ + # gcc-14-riscv64-linux-gnu \ + # g++-14-riscv64-linux-gnu \ + # libvulkan-dev:riscv64 + + # - name: Build + # run: | + # cmake -B build -DLLAMA_CURL=OFF \ + # -DCMAKE_BUILD_TYPE=Release \ + # -DGGML_VULKAN=ON \ + # -DGGML_OPENMP=OFF \ + # -DLLAMA_BUILD_EXAMPLES=ON \ + # -DLLAMA_BUILD_TOOLS=ON \ + # -DLLAMA_BUILD_TESTS=OFF \ + # -DCMAKE_SYSTEM_NAME=Linux \ + # -DCMAKE_SYSTEM_PROCESSOR=riscv64 \ + # -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \ + # -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \ + # -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + # -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \ + # -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ + # -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ + # -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH + + # cmake --build build --config Release -j $(nproc) + + # ubuntu-24-arm64-vulkan-cross: + # runs-on: ubuntu-24.04 + + # steps: + # - uses: actions/checkout@v4 + # - name: Setup Arm64 + # run: | + # sudo dpkg --add-architecture arm64 + + # # Add arch-specific repositories for non-amd64 architectures + # cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list + # deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe + # deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe + # deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe + # deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe + # EOF + + # sudo apt-get update || true ;# Prevent failure due to missing URLs. + + # sudo apt-get install -y --no-install-recommends \ + # build-essential \ + # glslc \ + # crossbuild-essential-arm64 \ + # libvulkan-dev:arm64 + + # - name: Build + # run: | + # cmake -B build -DLLAMA_CURL=OFF \ + # -DCMAKE_BUILD_TYPE=Release \ + # -DGGML_VULKAN=ON \ + # -DGGML_OPENMP=OFF \ + # -DLLAMA_BUILD_EXAMPLES=ON \ + # -DLLAMA_BUILD_TOOLS=ON \ + # -DLLAMA_BUILD_TESTS=OFF \ + # -DCMAKE_SYSTEM_NAME=Linux \ + # -DCMAKE_SYSTEM_PROCESSOR=aarch64 \ + # -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \ + # -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \ + # -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + # -DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \ + # -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ + # -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ + # -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH + + # cmake --build build --config Release -j $(nproc) ubuntu-24-ppc64el-cpu-cross: runs-on: ubuntu-24.04 @@ -185,52 +185,52 @@ jobs: cmake --build build --config Release -j $(nproc) - ubuntu-24-ppc64el-vulkan-cross: - runs-on: ubuntu-24.04 - - steps: - - uses: actions/checkout@v4 - - name: Setup PowerPC64le - run: | - sudo dpkg --add-architecture ppc64el - - # Add arch-specific repositories for non-amd64 architectures - cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list - deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe - deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe - deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe - deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe - EOF - - sudo apt-get update || true ;# Prevent failure due to missing URLs. - - sudo apt-get install -y --no-install-recommends \ - build-essential \ - glslc \ - gcc-14-powerpc64le-linux-gnu \ - g++-14-powerpc64le-linux-gnu \ - libvulkan-dev:ppc64el - - - name: Build - run: | - cmake -B build -DLLAMA_CURL=OFF \ - -DCMAKE_BUILD_TYPE=Release \ - -DGGML_VULKAN=ON \ - -DGGML_OPENMP=OFF \ - -DLLAMA_BUILD_EXAMPLES=ON \ - -DLLAMA_BUILD_TOOLS=ON \ - -DLLAMA_BUILD_TESTS=OFF \ - -DCMAKE_SYSTEM_NAME=Linux \ - -DCMAKE_SYSTEM_PROCESSOR=ppc64 \ - -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \ - -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \ - -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ - -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \ - -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ - -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ - -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH - - cmake --build build --config Release -j $(nproc) + # ubuntu-24-ppc64el-vulkan-cross: + # runs-on: ubuntu-24.04 + + # steps: + # - uses: actions/checkout@v4 + # - name: Setup PowerPC64le + # run: | + # sudo dpkg --add-architecture ppc64el + + # # Add arch-specific repositories for non-amd64 architectures + # cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list + # deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe + # deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe + # deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe + # deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe + # EOF + + # sudo apt-get update || true ;# Prevent failure due to missing URLs. + + # sudo apt-get install -y --no-install-recommends \ + # build-essential \ + # glslc \ + # gcc-14-powerpc64le-linux-gnu \ + # g++-14-powerpc64le-linux-gnu \ + # libvulkan-dev:ppc64el + + # - name: Build + # run: | + # cmake -B build -DLLAMA_CURL=OFF \ + # -DCMAKE_BUILD_TYPE=Release \ + # -DGGML_VULKAN=ON \ + # -DGGML_OPENMP=OFF \ + # -DLLAMA_BUILD_EXAMPLES=ON \ + # -DLLAMA_BUILD_TOOLS=ON \ + # -DLLAMA_BUILD_TESTS=OFF \ + # -DCMAKE_SYSTEM_NAME=Linux \ + # -DCMAKE_SYSTEM_PROCESSOR=ppc64 \ + # -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \ + # -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \ + # -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + # -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \ + # -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ + # -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ + # -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH + + # cmake --build build --config Release -j $(nproc) debian-13-loongarch64-cpu-cross: runs-on: ubuntu-24.04 diff --git a/.github/workflows/close-issue.yml b/.github/workflows/close-issue.yml index 276a217d4..19e785474 100644 --- a/.github/workflows/close-issue.yml +++ b/.github/workflows/close-issue.yml @@ -17,7 +17,7 @@ jobs: steps: - uses: actions/stale@v5 with: - exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap" + exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap" days-before-issue-stale: 30 days-before-issue-close: 14 stale-issue-label: "stale" diff --git a/CODEOWNERS b/CODEOWNERS index 3186f8eb1..4c0dd4b72 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -9,3 +9,4 @@ /ggml/src/ggml-cuda/mmvq.* @JohannesGaessler /ggml/src/ggml-opt.cpp @JohannesGaessler /ggml/src/gguf.cpp @JohannesGaessler +/ggml/src/ggml-vulkan/ @0cc4m diff --git a/common/arg.cpp b/common/arg.cpp index c1151f51d..060053595 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -1612,7 +1612,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex [](common_params & params, const std::string & value) { params.antiprompt.emplace_back(value); } - ).set_examples({LLAMA_EXAMPLE_MAIN})); + ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-sp", "--special"}, string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), @@ -2655,6 +2655,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.i_chunk = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); + add_opt(common_arg( + {"--show-statistics"}, + string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"), + [](common_params & params) { + params.show_statistics = true; + } + ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(common_arg( {"--parse-special"}, string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"), diff --git a/common/common.cpp b/common/common.cpp index 466271be6..d8c4d988b 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -448,6 +448,15 @@ void string_replace_all(std::string & s, const std::string & search, const std:: bool string_ends_with(const std::string_view & str, const std::string_view & suffix) { return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0; } + +bool string_remove_suffix(std::string & str, const std::string_view & suffix) { + bool has_suffix = string_ends_with(str, suffix); + if (has_suffix) { + str = str.substr(0, str.size() - suffix.size()); + } + return has_suffix; +} + size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) { if (!str.empty() && !stop.empty()) { const char text_last_char = str.back(); diff --git a/common/common.h b/common/common.h index 27adf5524..00f42694e 100644 --- a/common/common.h +++ b/common/common.h @@ -432,9 +432,10 @@ struct common_params { int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations int32_t i_chunk = 0; // start processing from this chunk - bool process_output = false; // collect data for the output tensor - bool compute_ppl = true; // whether to compute perplexity - bool parse_special = false; // whether to parse special tokens during imatrix tokenization + bool process_output = false; // collect data for the output tensor + bool compute_ppl = true; // whether to compute perplexity + bool show_statistics = false; // show imatrix statistics per tensor + bool parse_special = false; // whether to parse special tokens during imatrix tokenization // cvector-generator params int n_pca_batch = 100; @@ -534,6 +535,7 @@ static bool string_starts_with(const std::string & str, // While we wait for C++20's std::string::ends_with... bool string_ends_with(const std::string_view & str, const std::string_view & suffix); +bool string_remove_suffix(std::string & str, const std::string_view & suffix); size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop); bool string_parse_kv_override(const char * data, std::vector & overrides); diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index d802524bb..c8bf3c538 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -843,6 +843,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51": # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer res = "lfm2" + if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B + res = "exaone4" if res is None: logger.warning("\n") @@ -2861,7 +2864,8 @@ def set_gguf_parameters(self): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: num_heads = self.hparams["num_attention_heads"] num_kv_heads = self.hparams["num_key_value_heads"] - head_dim = self.hparams["head_dim"] + if (head_dim := self.hparams.get("head_dim")) is None: + head_dim = self.hparams["hidden_size"] // num_heads if "ernie." in name: name = name.replace("ernie.", "model.") @@ -2894,6 +2898,93 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter return [(self.map_tensor_name(name), data_torch)] +@ModelBase.register("Ernie4_5_MoeForCausalLM") +class Ernie4_5MoeModel(Ernie4_5Model): + model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE + _experts: list[dict[str, Tensor]] | None = None + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._experts = [{} for _ in range(self.block_count)] + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"]) + self.gguf_writer.add_expert_used_count(self.hparams["moe_k"]) + self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"]) + self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"]) + if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None: + self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) + if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None: + self.gguf_writer.add_expert_shared_count(shared_expert_count) + if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None: + self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # Modify correction bias name as in DeepseekV2 + if name.endswith("e_score_correction_bias"): + name = name.replace("e_score_correction_bias", "e_score_correction.bias") + + # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2) + match = re.match(r"model.mtp_block.(\d+)", name) + if match: + return [] + + # skip all other MTP tensors for now + match = re.match(r"model.mtp_emb_norm.(\d+)", name) + if match: + return [] + + match = re.match(r"model.mtp_hidden_norm.(\d+)", name) + if match: + return [] + + match = re.match(r"model.mtp_linear_proj.(\d+)", name) + if match: + return [] + + # process the experts separately + if name.find("mlp.experts") != -1: + n_experts = self.hparams["moe_num_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["gate_proj", "up_proj", "down_proj"]: + datas: list[Tensor] = [] + + for xid in range(n_experts): + ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + datas.append(self._experts[bid][ename_to_retrieve]) + del self._experts[bid][ename_to_retrieve] + + data_torch = torch.stack(datas, dim=0) + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + new_name = self.map_tensor_name(merged_name) + tensors.append((new_name, data_torch)) + + return tensors + else: + return [] + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + @ModelBase.register( "Qwen2VLModel", "Qwen2VLForConditionalGeneration", @@ -6692,6 +6783,75 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) +@ModelBase.register("Exaone4ForCausalLM") +class Exaone4Model(TextModel): + model_arch = gguf.MODEL_ARCH.EXAONE4 + + def set_vocab(self): + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + if hparams.get("sliding_window") is not None: + self.gguf_writer.add_sliding_window(hparams["sliding_window"]) + if "layer_types" in hparams: + self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]]) + elif "sliding_window_pattern" in hparams: + sliding_window_pattern = [] + if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG + for i in range(hparams["num_hidden_layers"]): + sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L") + if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4 + for i in range(hparams["num_hidden_layers"]): + sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0) + if len(sliding_window_pattern) == hparams["num_hidden_layers"]: + self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern) + + rope_scaling = self.hparams.get("rope_scaling") or {} + if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10_000.0) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 16.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + @ModelBase.register("GraniteForCausalLM") class GraniteModel(LlamaModel): """Conversion for IBM's GraniteForCausalLM""" diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index f7b6d97b1..abaf2ea9a 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -129,6 +129,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", }, {"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", }, {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, + {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", }, ] # some models are known to be broken upstream, so we will skip them as exceptions diff --git a/docs/build.md b/docs/build.md index 70767ad91..849c82526 100644 --- a/docs/build.md +++ b/docs/build.md @@ -305,9 +305,8 @@ On Linux it is possible to use unified memory architecture (UMA) to share main m ## Vulkan -**Windows** - -### w64devkit +### For Windows Users: +**w64devkit** Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases). @@ -334,7 +333,7 @@ cmake -B build -DGGML_VULKAN=ON cmake --build build --config Release ``` -### Git Bash MINGW64 +**Git Bash MINGW64** Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings @@ -357,7 +356,8 @@ Now you can load the model in conversation mode using `Vulkan` build/bin/Release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv ``` -### MSYS2 +**MSYS2** + Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies. ```sh pacman -S git \ @@ -373,9 +373,9 @@ cmake -B build -DGGML_VULKAN=ON cmake --build build --config Release ``` -**With docker**: +### For Docker users: -You don't need to install Vulkan SDK. It will be installed inside the container. +You don't need to install the Vulkan SDK. It will be installed inside the container. ```sh # Build the image @@ -385,32 +385,29 @@ docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile . docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 ``` -**Without docker**: +### For Linux users: -Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html) +First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide. -For example, on Ubuntu 22.04 (jammy), use the command below: +> [!IMPORTANT] +> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this. +Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding: ```bash -wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - -wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list -apt update -y -apt-get install -y vulkan-sdk -# To verify the installation, use the command below: vulkaninfo ``` -Alternatively your package manager might be able to provide the appropriate libraries. -For example for Ubuntu 22.04 you can install `libvulkan-dev` instead. -For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages. - -Then, build llama.cpp using the cmake command below: - +Then, assuming you have `cd` into your llama.cpp folder and there are no errors with running `vulkaninfo`, you can proceed to build llama.cpp using the CMake commands below: ```bash cmake -B build -DGGML_VULKAN=1 cmake --build build --config Release -# Test the output binary (with "-ngl 33" to offload all layers to GPU) -./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4 +``` + +Finally, after finishing your build, you should be able to do something like this: +```bash +# Test the output binary +# "-ngl 99" should offload all of the layers to GPU for most (if not all) models. +./build/bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -ngl 99 # You should see in the output, ggml_vulkan detected your GPU. For example: # ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32 diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 46fb451ba..e48f48fc3 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -184,6 +184,9 @@ int main(int argc, char ** argv) { // extra text to insert in each client's prompt in order to make it larger const int32_t n_junk = std::max(1, params.n_junk); + // signed seed, use negative values to indicate different seeds for the different clients + const int32_t & sseed = params.sampling.seed; + // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); @@ -219,12 +222,21 @@ int main(int argc, char ** argv) { const int n_ctx = llama_n_ctx(ctx); + if (sseed >= 0) { + LOG_INF("%s: initializing all samplers with the same RNG seed: %d (use a negative seed to have different seeds)\n", __func__, sseed); + } else { + LOG_INF("%s: initializing samplers with different RNG seeds, starting from %d\n", __func__, sseed); + } + std::vector clients(n_clients); for (size_t i = 0; i < clients.size(); ++i) { auto & client = clients[i]; client.id = i; client.smpl = common_sampler_init(model, params.sampling); - //params.sampling.seed++; + + if (sseed < 0) { + params.sampling.seed--; + } } std::vector tokens_system; diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c index 5fd379f6a..fcc552da5 100644 --- a/ggml/src/ggml-alloc.c +++ b/ggml/src/ggml-alloc.c @@ -22,21 +22,6 @@ static bool ggml_is_view(const struct ggml_tensor * t) { return t->view_src != NULL; } -static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { - if (a->type != b->type) { - return false; - } - for (int i = 0; i < GGML_MAX_DIMS; i++) { - if (a->ne[i] != b->ne[i]) { - return false; - } - if (a->nb[i] != b->nb[i]) { - return false; - } - } - return true; -} - // ops that return true for this function must not use restrict pointers for their backend implementations static bool ggml_op_can_inplace(enum ggml_op op) { switch (op) { diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index 788861a36..b7498b8d4 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -352,21 +352,6 @@ ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) { // backend copy -static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { - if (a->type != b->type) { - return false; - } - for (int i = 0; i < GGML_MAX_DIMS; i++) { - if (a->ne[i] != b->ne[i]) { - return false; - } - if (a->nb[i] != b->nb[i]) { - return false; - } - } - return true; -} - void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 4d5c2c182..76bed4e8c 100755 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -1785,8 +1785,27 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0], bcast_weight_nb[2], bcast_weight_nb[3], bcast_weight_nb[4], bcast_weight_nb[5]}; - aclTensor* acl_weight_tensor = - ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims); + aclTensor* acl_weight_tensor; + + bool weightToNZ = false; +#ifdef ASCEND_310P + weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr); +#endif + if (weightToNZ && is_matmul_weight(weight)) { + int64_t acl_stride[2] = {1, transpose_ne[1]}; + + // Reverse ne. + std::reverse(transpose_ne, transpose_ne + n_dims); + + std::vector storageDims = {transpose_ne[0], transpose_ne[1]}; + + acl_weight_tensor = aclCreateTensor( + transpose_ne, n_dims, ggml_cann_type_mapping(weight->type), acl_stride, + 0, ACL_FORMAT_FRACTAL_NZ, storageDims.data(), 2, weight->data); + } else { + acl_weight_tensor = + ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_ND); + } aclTensor* acl_dst = ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims); diff --git a/ggml/src/ggml-cann/aclnn_ops.h b/ggml/src/ggml-cann/aclnn_ops.h index 80ce80bae..924da66ed 100755 --- a/ggml/src/ggml-cann/aclnn_ops.h +++ b/ggml/src/ggml-cann/aclnn_ops.h @@ -23,6 +23,7 @@ #ifndef CANN_ACLNN_OPS #define CANN_ACLNN_OPS +#include #include #include #include @@ -1020,6 +1021,37 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe */ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst); +/** + * @brief Check whether a tensor is a weight tensor for matrix multiplication. + * + * @details Checks whether the given tensor serves as weight parameters in matrix multiplication operations, + * typically within neural network layers. The function maintains a static set of canonical weight + * naming suffixes from Transformer-based architectures. Uses substring matching to identify weight + * tensors even with hierarchical naming patterns. + * + * @param tensor Pointer to the target ggml_tensor object (const-qualified). + */ +static bool is_matmul_weight(const ggml_tensor* tensor) { + std::string name = ggml_get_name(tensor); + static const std::unordered_set weight_suffixes{ + "output.weight", + "attn_q.weight", + "attn_k.weight", + "attn_v.weight", + "attn_output.weight", + "ffn_gate.weight", + "ffn_up.weight", + "ffn_down.weight" + }; + + for (const auto& suffix : weight_suffixes) { + if (name.find(suffix) != std::string::npos) { + return true; + } + } + return false; +} + /** * @brief Applies a element-wise operation to two input tensors using the CANN * backend. diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index e5e11d4cd..f30241aca 100755 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -24,6 +24,7 @@ #include #include +#include #include #include @@ -1115,6 +1116,63 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor( return GGML_STATUS_SUCCESS; } +static int CreateAclTensorWeight(const void *hostData, const std::vector &shape, void **deviceAddr, + aclDataType dataType, aclTensor **tensor) +{ + uint64_t size = 1; + for (auto i : shape) { + size *= i; + } + + const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size()); + ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size)); + + size *= sizeof(int16_t); + + ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST)); + aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE); + + std::vector strides(shape.size(), 1); + for (int64_t i = shape.size() - 2; i >= 0; i--) { + strides[i] = shape[i + 1] * strides[i + 1]; + } + + *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, + shape.data(), shape.size(), *deviceAddr); + return 0; +} + +static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) { + aclrtStream stream; + ACL_CHECK(aclrtCreateStream(&stream)); + + std::vector weightTransposedShape = {tensor->ne[1], tensor->ne[0]}; + void *weightTransposedDeviceAddr = nullptr; + aclTensor *weightTransposed = nullptr; + CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr, + ggml_cann_type_mapping(tensor->type), &weightTransposed); + + uint64_t workspaceSize = 0; + aclOpExecutor *executor; + void *workspaceAddr = nullptr; + + // TransMatmulWeight + ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor)); + std::unique_ptr workspaceAddrPtrTrans(nullptr, aclrtFree); + if (workspaceSize > 0) { + ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST)); + workspaceAddrPtrTrans.reset(workspaceAddr); + } + ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream)); + + size_t size = ggml_nelements(tensor) * ggml_element_size(tensor); + + aclrtMemcpy((char *)tensor->data + offset, size, + weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE); + ACL_CHECK(aclDestroyTensor(weightTransposed)); + aclrtFree(weightTransposedDeviceAddr); +} + // TODO: need handle tensor which has paddings. /** * @brief Set tensor data in a CANN buffer. @@ -1139,9 +1197,16 @@ static void ggml_backend_cann_buffer_set_tensor( // For acl, synchronous functions use this default stream. // Why aclrtSynchronizeDevice? + bool weightToNZ = false; +#ifdef ASCEND_310P + weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr); +#endif if (!need_transform(tensor->type)) { ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size, ACL_MEMCPY_HOST_TO_DEVICE)); + if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) { + weight_format_to_nz(tensor, data, offset); + } } else { void *transform_buffer = malloc(size); ggml_backend_cann_transform(tensor, data, transform_buffer); diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 66a5ad8d2..d9590b9d0 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -494,9 +494,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name) # Fetch KleidiAI sources: include(FetchContent) - set(KLEIDIAI_COMMIT_TAG "v1.9.0") + set(KLEIDIAI_COMMIT_TAG "v1.11.0") set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz") - set(KLEIDIAI_ARCHIVE_MD5 "2a8e1bb55d201557553545536489a017") + set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2") if (POLICY CMP0135) cmake_policy(SET CMP0135 NEW) diff --git a/ggml/src/ggml-cpu/arch/loongarch/quants.c b/ggml/src/ggml-cpu/arch/loongarch/quants.c index 9e33fb322..7908da4d1 100644 --- a/ggml/src/ggml-cpu/arch/loongarch/quants.c +++ b/ggml/src/ggml-cpu/arch/loongarch/quants.c @@ -544,7 +544,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) ); max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) ); __m128 tmp = max4; - max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 )); + max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x1 )); const float max_scalar = ((v4f32)max4)[0]; // Quantize these floats diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.cpp b/ggml/src/ggml-cpu/kleidiai/kernels.cpp index 910fd0ee4..ddd29d002 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kernels.cpp @@ -22,9 +22,94 @@ #include "kai_common.h" +#include "simd-mappings.h" + #include "kernels.h" #define NELEMS(x) sizeof(x) / sizeof(*x) + +static const size_t INT4_PER_BYTE = 2; +static const size_t INT4_BITS = 4; +static const int Q4_0_ZERO_POINT = 8; +const size_t INT4_PER_UINT16 = 4; + +static void dequantize_row_qsi4c32pscalef16( + const void *packed_data, + int32_t row_idx, + int64_t nc, + float *out, + size_t nr_pack, + size_t packed_row_stride, + size_t kr, + size_t bl, + size_t num_bytes_multiplier +) { + size_t group_idx = row_idx / nr_pack; + size_t row_in_group = row_idx % nr_pack; + const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride; + size_t num_blocks = nc / bl; + const uint8_t *block_ptr = packed_group; + + for (size_t b = 0; b < num_blocks; ++b) { + uint16_t scale_f16 = *((const uint16_t *)(block_ptr + row_in_group * num_bytes_multiplier)); + float scale = GGML_CPU_FP16_TO_FP32(scale_f16); + + const uint8_t *segment_ptr = block_ptr + nr_pack * num_bytes_multiplier; + size_t num_segments = bl / kr; + size_t num_bytes_per_segment = kr / INT4_PER_BYTE; + + for (size_t s = 0; s < num_segments; ++s) { + const uint8_t *seg_base = segment_ptr + s * nr_pack * num_bytes_per_segment; + const uint8_t *qbytes = seg_base + row_in_group * num_bytes_per_segment; + for (size_t k = 0; k < num_bytes_per_segment; ++k) { + uint8_t byte = qbytes[k] ^ 0x88; + int x0 = (byte & 0x0F) - Q4_0_ZERO_POINT; + int x1 = (byte >> INT4_BITS) - Q4_0_ZERO_POINT; + out[b * bl + s * num_bytes_per_segment + k] = x0 * scale; + out[b * bl + s * num_bytes_per_segment + k + bl/2] = x1 * scale; + } + } + block_ptr += nr_pack * num_bytes_multiplier + num_segments * nr_pack * num_bytes_per_segment; + } +} + +static void dequantize_row_qsi4c32ps1s0scalef16( + const void *packed_data, + int32_t row_idx, + int64_t k, + float *out, + size_t nr, + size_t packed_row_stride, + size_t kr, + size_t bl, + size_t num_bytes_multiplier +) { + const size_t num_blocks = k / bl; + const size_t bl4 = bl / INT4_PER_UINT16; + + size_t group_idx = row_idx / nr; + size_t row_in_group = row_idx % nr; + + const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride; + const uint16_t *qdata = (const uint16_t *)packed_group; + const uint16_t *scales = (const uint16_t *)(packed_group + packed_row_stride - (nr * num_blocks * num_bytes_multiplier)); + + for (size_t block_idx = 0; block_idx < num_blocks; ++block_idx) { + uint16_t scale_f16 = scales[row_in_group + block_idx * nr]; + float scale = GGML_CPU_FP16_TO_FP32(scale_f16); + + for (size_t bl4_idx = 0; bl4_idx < bl4; ++bl4_idx) { + uint16_t q = qdata[(block_idx * bl4 + bl4_idx) * nr + row_in_group]; + + for (size_t qidx = 0; qidx < INT4_PER_UINT16; ++qidx) { + int v = ((q >> (qidx * 4)) & 0xF) - Q4_0_ZERO_POINT; + out[block_idx * bl + bl4_idx * INT4_BITS + qidx] = v * scale; + } + } + } + GGML_UNUSED(kr); +} + static ggml_kleidiai_kernels gemm_gemv_kernels[] = { #if defined(__ARM_FEATURE_SME) { @@ -63,8 +148,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, - /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, + /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, + /* .to_float = */ dequantize_row_qsi4c32ps1s0scalef16, }, /* .required_cpu = */ CPU_FEATURE_SME, /* .lhs_type = */ GGML_TYPE_F32, @@ -107,8 +194,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, - /* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, + /* .packed_stride = */ NULL, + /* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, + /* .to_float = */ NULL, }, /* .required_cpu = */ CPU_FEATURE_SME, /* .lhs_type = */ GGML_TYPE_F32, @@ -154,8 +243,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, - /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .to_float = */ dequantize_row_qsi4c32pscalef16, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD, /* .lhs_type = */ GGML_TYPE_F32, @@ -200,8 +291,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, - /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .to_float = */ dequantize_row_qsi4c32pscalef16, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, /* .lhs_type = */ GGML_TYPE_F32, @@ -247,8 +340,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, - /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .to_float = */ dequantize_row_qsi4c32pscalef16, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, /* .lhs_type = */ GGML_TYPE_F32, @@ -293,8 +388,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32, }, /* .rhs_info = */ { - /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, - /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .to_float = */ dequantize_row_qsi4c32pscalef16, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD, /* .lhs_type = */ GGML_TYPE_F32, diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.h b/ggml/src/ggml-cpu/kleidiai/kernels.h index 3b268d4a2..bc8f33405 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.h +++ b/ggml/src/ggml-cpu/kleidiai/kernels.h @@ -71,12 +71,15 @@ struct rhs_packing_info { std::function, std::function > packed_size; + size_t (*packed_stride)(size_t k, size_t nr, size_t kr, size_t bl); std::variant< std::function, std::function > pack_func; + void (*to_float)(const void *packed_data, int32_t row_idx, int64_t nc, float *out, size_t nr_pack, size_t packed_row_stride, + size_t kr, size_t bl, size_t num_bytes_multiplier); }; struct ggml_kleidiai_kernels { diff --git a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp index fafe45e6c..3a513a55d 100644 --- a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp @@ -40,6 +40,17 @@ struct ggml_kleidiai_context { ggml_kleidiai_kernels * kernels; } static ctx = { CPU_FEATURE_NONE, NULL }; +static const char* cpu_feature_to_string(cpu_feature f) { + switch (f) { + case CPU_FEATURE_NONE: return "NONE"; + case CPU_FEATURE_DOTPROD: return "DOTPROD"; + case CPU_FEATURE_I8MM: return "I8MM"; + case CPU_FEATURE_SVE: return "SVE"; + case CPU_FEATURE_SME: return "SME"; + default: return "UNKNOWN"; + } +} + static void init_kleidiai_context(void) { ggml_critical_section_start(); @@ -62,6 +73,11 @@ static void init_kleidiai_context(void) { ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; } ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features); +#ifndef NDEBUG + if (ctx.kernels) { + GGML_LOG_DEBUG("kleidiai: using kernel with CPU feature %s\n", cpu_feature_to_string(ctx.kernels->required_cpu)); + } +#endif } ggml_critical_section_end(); } @@ -102,6 +118,9 @@ static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint1 class tensor_traits : public ggml::cpu::tensor_traits { bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { + if (op->op != GGML_OP_MUL_MAT) { + return false; + } ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); GGML_ASSERT(kernels); kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; @@ -135,6 +154,10 @@ class tensor_traits : public ggml::cpu::tensor_traits { } else if (dst->src[0]->type == GGML_TYPE_F16) { return compute_forward_kv_cache(params, dst); } + } else if (dst->op == GGML_OP_GET_ROWS) { + if (dst->src[0]->type == GGML_TYPE_Q4_0) { + return compute_forward_get_rows(params, dst); + } } return false; } @@ -270,6 +293,8 @@ class tensor_traits : public ggml::cpu::tensor_traits { } bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) { + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0); + const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; @@ -342,8 +367,49 @@ class tensor_traits : public ggml::cpu::tensor_traits { return true; } + bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) { + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0); + GGML_ASSERT(ctx.kernels); + + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + GGML_TENSOR_BINARY_OP_LOCALS + + rhs_packing_info * rhs_info = &ctx.kernels->rhs_info; + kernel_info * kernel = &ctx.kernels->gemm; + + const int64_t nc = ne00; + const int64_t nr = ggml_nelements(src1); + + const size_t block_rows = kernel->get_nr(); + const size_t kr = kernel->get_kr(); + + const size_t num_bytes_multiplier = sizeof(uint16_t); + const size_t packed_stride = rhs_info->packed_stride(nc, block_rows, kr, QK4_0); + + const int ith = params->ith; + const int nth = params->nth; + + const int dr = (nr + nth - 1) / nth; + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int64_t i = ir0; i < ir1; ++i) { + GGML_ASSERT(src1->type == GGML_TYPE_I32); + int64_t row_idx = ((const int32_t *)src1->data)[i]; + GGML_ASSERT(row_idx >= 0 && row_idx < src0->ne[1]); + + float *out = (float *)((char *)dst->data + i * nb1); + rhs_info->to_float(src0->data, row_idx, nc, out, block_rows, packed_stride, kr, QK4_0, num_bytes_multiplier); + } + + return true; + } + public: int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) { + GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0); GGML_ASSERT(ctx.kernels); const size_t n = tensor->ne[1]; const size_t k = tensor->ne[0]; @@ -351,17 +417,12 @@ class tensor_traits : public ggml::cpu::tensor_traits { size_t kr = ctx.kernels->gemm.get_kr(); size_t sr = ctx.kernels->gemm.get_sr(); -#ifndef NDEBUG - const size_t repacked_size = variant_call(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0); - GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!"); -#endif struct kai_rhs_pack_qs4cxs1s0_param params; params.lhs_zero_point = 1; params.rhs_zero_point = 8; variant_call(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms); return 0; - GGML_UNUSED(data_size); } }; @@ -375,8 +436,8 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); - GGML_UNUSED(buffer); return GGML_STATUS_SUCCESS; + GGML_UNUSED(buffer); } static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, @@ -418,18 +479,35 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b GGML_UNUSED(buft); } +static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) { + GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0); + GGML_ASSERT(ctx.kernels); + + const size_t n = tensor->ne[1]; + const size_t k = tensor->ne[0]; + const size_t nr = ctx.kernels->gemm.get_nr(); + const size_t kr = ctx.kernels->gemm.get_kr(); + + return variant_call(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0); + + GGML_UNUSED(buft); +} + namespace ggml::cpu::kleidiai { class extra_buffer_type : ggml::cpu::extra_buffer_type { bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { - if (op->op == GGML_OP_MUL_MAT && + if ((op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) && op->src[0]->type == GGML_TYPE_Q4_0 && op->src[0]->buffer && (ggml_n_dims(op->src[0]) == 2) && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) { + if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) { + return false; + } if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } - if (op->src[1]->type == GGML_TYPE_F32 && + if ((op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_I32) && ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) { return true; } @@ -438,7 +516,7 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type { } ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { - if (op->op == GGML_OP_MUL_MAT) { + if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) { if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { return (ggml::cpu::tensor_traits *) op->src[0]->extra; } @@ -469,7 +547,7 @@ ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) { /* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment, /* .get_max_size = */ nullptr, // defaults to SIZE_MAX - /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes + /* .get_alloc_size = */ ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size, /* .is_host = */ nullptr, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), diff --git a/ggml/src/ggml-cuda/CMakeLists.txt b/ggml/src/ggml-cuda/CMakeLists.txt index c9ff4aa32..98ed29bc9 100644 --- a/ggml/src/ggml-cuda/CMakeLists.txt +++ b/ggml/src/ggml-cuda/CMakeLists.txt @@ -102,12 +102,12 @@ if (CUDAToolkit_FOUND) if (GGML_STATIC) if (WIN32) # As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library - target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt) + target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas) else () - target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) + target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static) endif() else() - target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt) + target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas) endif() if (GGML_CUDA_NO_VMM) diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index eeaa14bf5..15c927861 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -6,24 +6,33 @@ #define CUDA_Q8_0_NE_ALIGN 2048 template -static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) { - const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x); +static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, + const int64_t ne00, const int64_t ne01, const int64_t ne02, + const int64_t s01, const int64_t s02, const int64_t s03) { + const int64_t i00 = 2 * (int64_t(blockDim.x)*blockIdx.x + threadIdx.x); - if (i >= k) { + if (i00 >= ne00) { return; } - const int64_t ib = i/qk; // block index - const int64_t iqs = (i%qk)/qr; // quant index - const int64_t iybs = i - i%qk; // y block start index + const int64_t i01 = blockIdx.y; + const int64_t i02 = blockIdx.z % ne02; + const int64_t i03 = blockIdx.z / ne02; + + const int64_t ibx0 = i03*s03 + i02*s02 + i01*s01; + + const int64_t ib = ibx0 + i00/qk; // block index + const int64_t iqs = (i00%qk)/qr; // quant index + const int64_t iybs = i00 - i00%qk; // y block start index const int64_t y_offset = qr == 1 ? 1 : qk/2; // dequantize dfloat2 v; dequantize_kernel(vx, ib, iqs, v); - y[iybs + iqs + 0] = v.x; - y[iybs + iqs + y_offset] = v.y; + const int64_t iy0 = ((i03*ne02 + i02)*ne01 + i01)*ne00 + iybs + iqs; + y[iy0 + 0] = float(v.x); + y[iy0 + y_offset] = float(v.y); } template @@ -457,9 +466,17 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst } template -static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) { - const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE); - dequantize_block<<>>(vx, y, k); +static void dequantize_block_cuda(const void * vx, dst_t * y, + const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03, + const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) { + const dim3 num_blocks((ne00 + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE), ne01, ne02*ne03); + dequantize_block<<>> + (vx, y, ne00, ne01, ne02, s01, s02, s03); +} + +template +static void dequantize_block_cont_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) { + dequantize_block_cuda(vx, y, k, 1, 1, 1, k/qk, k/qk, k/qk, stream); } static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int64_t k, cudaStream_t stream) { @@ -624,14 +641,14 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q5_1: - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q8_0: if (fp16_available(ggml_cuda_info().devices[ggml_cuda_get_device()].cc)) { return dequantize_block_q8_0_f16_cuda; } - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda; case GGML_TYPE_Q3_K: @@ -676,11 +693,11 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q5_1: - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q8_0: - return dequantize_block_cuda; + return dequantize_block_cont_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda; case GGML_TYPE_Q3_K: @@ -722,6 +739,16 @@ to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type) { switch (type) { case GGML_TYPE_F32: return convert_unary_cuda; + case GGML_TYPE_Q4_0: + return dequantize_block_cuda; + case GGML_TYPE_Q4_1: + return dequantize_block_cuda; + case GGML_TYPE_Q5_0: + return dequantize_block_cuda; + case GGML_TYPE_Q5_1: + return dequantize_block_cuda; + case GGML_TYPE_Q8_0: + return dequantize_block_cuda; case GGML_TYPE_BF16: return convert_unary_cuda; default: @@ -733,6 +760,16 @@ to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type) { switch (type) { case GGML_TYPE_F32: return convert_unary_cuda; + case GGML_TYPE_Q4_0: + return dequantize_block_cuda; + case GGML_TYPE_Q4_1: + return dequantize_block_cuda; + case GGML_TYPE_Q5_0: + return dequantize_block_cuda; + case GGML_TYPE_Q5_1: + return dequantize_block_cuda; + case GGML_TYPE_Q8_0: + return dequantize_block_cuda; case GGML_TYPE_F16: return convert_unary_cuda; default: @@ -744,6 +781,16 @@ to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type) { switch (type) { case GGML_TYPE_F16: return convert_unary_cuda; + case GGML_TYPE_Q4_0: + return dequantize_block_cuda; + case GGML_TYPE_Q4_1: + return dequantize_block_cuda; + case GGML_TYPE_Q5_0: + return dequantize_block_cuda; + case GGML_TYPE_Q5_1: + return dequantize_block_cuda; + case GGML_TYPE_Q8_0: + return dequantize_block_cuda; case GGML_TYPE_BF16: return convert_unary_cuda; default: diff --git a/ggml/src/ggml-cuda/cpy-utils.cuh b/ggml/src/ggml-cuda/cpy-utils.cuh new file mode 100644 index 000000000..410c12b7b --- /dev/null +++ b/ggml/src/ggml-cuda/cpy-utils.cuh @@ -0,0 +1,225 @@ +#pragma once + +#include "ggml-common.h" + +template +static __device__ __forceinline__ void convert_flt(const src_t * src, dst_t * dst) { + if constexpr (std::is_same_v) { + *dst = *src; + } else { + *dst = float(*src); + } +} + +static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) { + if (x <= val[0]) return 0; + if (x >= val[n-1]) return n-1; + int ml = 0, mu = n-1; + while (mu-ml > 1) { + int mav = (ml+mu)/2; + if (x < val[mav]) mu = mav; else ml = mav; + } + return x - val[mu-1] < val[mu] - x ? mu-1 : mu; +} + +static __device__ void quantize_f32_q4_0_block(const float * __restrict__ x, block_q4_0 * __restrict__ y) { + float amax = 0.0f; + float vmax = 0.0f; + + for (int j = 0; j < QK4_0; ++j) { + const float v = x[j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + vmax = v; + } + } + + const float d = vmax / -8; + const float id = d ? 1.0f/d : 0.0f; + + y->d = d; + + for (int j = 0; j < QK4_0/2; ++j) { + const float x0 = x[0 + j]*id; + const float x1 = x[QK4_0/2 + j]*id; + + const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f)); + const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f)); + + y->qs[j] = xi0; + y->qs[j] |= xi1 << 4; + } +} + +static __device__ void quantize_f32_q4_1_block(const float * __restrict__ x, block_q4_1 * __restrict__ y) { + float vmin = FLT_MAX; + float vmax = -FLT_MAX; + + for (int j = 0; j < QK4_1; ++j) { + const float v = x[j]; + if (v < vmin) vmin = v; + if (v > vmax) vmax = v; + } + + const float d = (vmax - vmin) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y->dm.x = d; + y->dm.y = vmin; + + for (int j = 0; j < QK4_1/2; ++j) { + const float x0 = (x[0 + j] - vmin)*id; + const float x1 = (x[QK4_1/2 + j] - vmin)*id; + + const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f)); + const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f)); + + y->qs[j] = xi0; + y->qs[j] |= xi1 << 4; + } +} + +static __device__ void quantize_f32_q5_0_block(const float * __restrict__ x, block_q5_0 * __restrict__ y) { + float amax = 0.0f; + float vmax = 0.0f; + + for (int j = 0; j < QK5_0; ++j) { + const float v = x[j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + vmax = v; + } + } + + const float d = vmax / -16; + const float id = d ? 1.0f/d : 0.0f; + + y->d = d; + + uint32_t qh = 0; + for (int j = 0; j < QK5_0/2; ++j) { + const float x0 = x[0 + j]*id; + const float x1 = x[QK5_0/2 + j]*id; + + const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f)); + const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f)); + + y->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); + } + memcpy(y->qh, &qh, sizeof(qh)); +} + +static __device__ void quantize_f32_q5_1_block(const float * __restrict__ x, block_q5_1 * __restrict__ y) { + float min = x[0]; + float max = x[0]; + + for (int j = 1; j < QK5_1; ++j) { + const float v = x[j]; + min = v < min ? v : min; + max = v > max ? v : max; + } + + const float d = (max - min) / 31; + const float id = d ? 1.0f/d : 0.0f; + + y->dm.x = d; + y->dm.y = min; + + uint32_t qh = 0; + for (int j = 0; j < QK5_1/2; ++j) { + const float x0 = (x[0 + j] - min)*id; + const float x1 = (x[QK5_1/2 + j] - min)*id; + + const uint8_t xi0 = (uint8_t)(x0 + 0.5f); + const uint8_t xi1 = (uint8_t)(x1 + 0.5f); + + y->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2); + } + memcpy(y->qh, &qh, sizeof(qh)); +} + +static __device__ void quantize_f32_q8_0_block(const float * __restrict__ x, block_q8_0 * __restrict__ y) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_0; j++) { + const float v = x[j]; + amax = fmaxf(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y->d = d; + + for (int j = 0; j < QK8_0; ++j) { + const float x0 = x[j]*id; + y->qs[j] = roundf(x0); + } +} + +static __device__ void quantize_f32_iq4_nl_block(const float * __restrict__ x, block_iq4_nl * __restrict__ y) { + float amax = 0.0f; + float vmax = 0.0f; + + for (int j = 0; j < QK4_NL; ++j) { + const float v = x[j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + vmax = v; + } + } + + float d = vmax / kvalues_iq4nl[0]; + const float id = d ? 1.0f/d : 0.0f; + + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < QK4_NL/2; ++j) { + const float x0 = x[0 + j]*id; + const float x1 = x[QK4_NL/2 + j]*id; + const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0); + const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1); + y->qs[j] = xi0 | (xi1 << 4); + const float v0 = kvalues_iq4nl[xi0]; + const float v1 = kvalues_iq4nl[xi1]; + const float w0 = x[0 + j]*x[0 + j]; + const float w1 = x[QK4_NL/2 + j]*x[QK4_NL/2 + j]; + sumqx += w0*v0*x[j] + w1*v1*x[QK4_NL/2 + j]; + sumq2 += w0*v0*v0 + w1*v1*v1; + } + + y->d = sumq2 > 0 ? sumqx/sumq2 : d; +} + +// Wrapper functions for cpy.cu compatibility +static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) { + quantize_f32_q4_0_block((const float *)cxi, (block_q4_0 *)cdsti); +} + +static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) { + quantize_f32_q4_1_block((const float *)cxi, (block_q4_1 *)cdsti); +} + +static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) { + quantize_f32_q5_0_block((const float *)cxi, (block_q5_0 *)cdsti); +} + +static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) { + quantize_f32_q5_1_block((const float *)cxi, (block_q5_1 *)cdsti); +} + +static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) { + quantize_f32_q8_0_block((const float *)cxi, (block_q8_0 *)cdsti); +} + +static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) { + quantize_f32_iq4_nl_block((const float *)cxi, (block_iq4_nl *)cdsti); +} + +template +static __device__ void cpy_1_flt(const char * cxi, char * cdsti) { + convert_flt((const src_t *)cxi, (dst_t *)cdsti); +} diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu index 2c55d2149..0e5964907 100644 --- a/ggml/src/ggml-cuda/cpy.cu +++ b/ggml/src/ggml-cuda/cpy.cu @@ -1,51 +1,17 @@ #include "cpy.cuh" #include "dequantize.cuh" +#include "cpy-utils.cuh" #ifdef GGML_USE_MUSA #include "ggml-musa/mudnn.cuh" #endif // GGML_USE_MUSA typedef void (*cpy_kernel_t)(const char * cx, char * cdst); -static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - float * dsti = (float *) cdsti; - - *dsti = *xi; -} - -static __device__ void cpy_1_f32_bf16(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - nv_bfloat16 * dsti = (nv_bfloat16 *) cdsti; - - *dsti = *xi; -} - -static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - half * dsti = (half *) cdsti; - - *dsti = __float2half(*xi); -} - -static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) { - const half * xi = (const half *) cxi; - half * dsti = (half *) cdsti; - - *dsti = *xi; -} - -static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) { - const half * xi = (const half *) cxi; - float * dsti = (float *) cdsti; - - *dsti = *xi; -} - template -static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne, - const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, - const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { +static __global__ void cpy_flt(const char * cx, char * cdst_direct, const int ne, + const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= ne) { @@ -71,29 +37,6 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in cpy_1(cx + x_offset, cdst + dst_offset); } -static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_q8_0 * dsti = (block_q8_0 *) cdsti; - - float amax = 0.0f; // absolute max - - for (int j = 0; j < QK8_0; j++) { - const float v = xi[j]; - amax = fmaxf(amax, fabsf(v)); - } - - const float d = amax / ((1 << 7) - 1); - const float id = d ? 1.0f/d : 0.0f; - - dsti->d = d; - - for (int j = 0; j < QK8_0; ++j) { - const float x0 = xi[j]*id; - - dsti->qs[j] = roundf(x0); - } -} - static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { float * cdstf = (float *)(cdsti); @@ -106,139 +49,6 @@ static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { } } -static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_q4_0 * dsti = (block_q4_0 *) cdsti; - - float amax = 0.0f; - float vmax = 0.0f; - - for (int j = 0; j < QK4_0; ++j) { - const float v = xi[j]; - if (amax < fabsf(v)) { - amax = fabsf(v); - vmax = v; - } - } - - const float d = vmax / -8; - const float id = d ? 1.0f/d : 0.0f; - - dsti->d = d; - - for (int j = 0; j < QK4_0/2; ++j) { - const float x0 = xi[0 + j]*id; - const float x1 = xi[QK4_0/2 + j]*id; - - const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f)); - const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f)); - - dsti->qs[j] = xi0; - dsti->qs[j] |= xi1 << 4; - } -} - -static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_q4_1 * dsti = (block_q4_1 *) cdsti; - - float vmin = FLT_MAX; - float vmax = -FLT_MAX; - - for (int j = 0; j < QK4_1; ++j) { - const float v = xi[j]; - - if (v < vmin) vmin = v; - if (v > vmax) vmax = v; - } - - const float d = (vmax - vmin) / ((1 << 4) - 1); - const float id = d ? 1.0f/d : 0.0f; - - dsti->dm.x = d; - dsti->dm.y = vmin; - - for (int j = 0; j < QK4_1/2; ++j) { - const float x0 = (xi[0 + j] - vmin)*id; - const float x1 = (xi[QK4_1/2 + j] - vmin)*id; - - const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f)); - const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f)); - - dsti->qs[j] = xi0; - dsti->qs[j] |= xi1 << 4; - } -} - -static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_q5_0 * dsti = (block_q5_0 *) cdsti; - - float amax = 0.0f; - float vmax = 0.0f; - - for (int j = 0; j < QK5_0; ++j) { - const float v = xi[j]; - if (amax < fabsf(v)) { - amax = fabsf(v); - vmax = v; - } - } - - const float d = vmax / -16; - const float id = d ? 1.0f/d : 0.0f; - - dsti->d = d; - - uint32_t qh = 0; - for (int j = 0; j < QK5_0/2; ++j) { - const float x0 = xi[0 + j]*id; - const float x1 = xi[QK5_0/2 + j]*id; - - const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f)); - const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f)); - - dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); - qh |= ((xi0 & 0x10u) >> 4) << (j + 0); - qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); - } - memcpy(dsti->qh, &qh, sizeof(qh)); -} - -static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_q5_1 * dsti = (block_q5_1 *) cdsti; - - float min = xi[0]; - float max = xi[0]; - - for (int j = 1; j < QK5_1; ++j) { - const float v = xi[j]; - min = v < min ? v : min; - max = v > max ? v : max; - } - - const float d = (max - min) / 31; - const float id = d ? 1.0f/d : 0.0f; - - dsti->dm.x = d; - dsti->dm.y = min; - - uint32_t qh = 0; - for (int j = 0; j < QK5_1/2; ++j) { - const float x0 = (xi[0 + j] - min)*id; - const float x1 = (xi[QK5_1/2 + j] - min)*id; - - const uint8_t xi0 = (uint8_t)(x0 + 0.5f); - const uint8_t xi1 = (uint8_t)(x1 + 0.5f); - - dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); - qh |= ((xi0 & 0x10u) >> 4) << (j + 0); - qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2); - } - memcpy(dsti->qh, &qh, sizeof(qh)); -} - template static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) { float * cdstf = (float *)(cdsti); @@ -252,53 +62,6 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) { } } -static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) { - if (x <= val[0]) return 0; - if (x >= val[n-1]) return n-1; - int ml = 0, mu = n-1; - while (mu-ml > 1) { - int mav = (ml+mu)/2; - if (x < val[mav]) mu = mav; else ml = mav; - } - return x - val[mu-1] < val[mu] - x ? mu-1 : mu; -} - -static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) { - const float * xi = (const float *) cxi; - block_iq4_nl * dsti = (block_iq4_nl *) cdsti; - - float amax = 0.0f; - float vmax = 0.0f; - - for (int j = 0; j < QK4_NL; ++j) { - const float v = xi[j]; - if (amax < fabsf(v)) { - amax = fabsf(v); - vmax = v; - } - } - - float d = vmax / kvalues_iq4nl[0]; - const float id = d ? 1.0f/d : 0.0f; - - float sumqx = 0, sumq2 = 0; - for (int j = 0; j < QK4_NL/2; ++j) { - const float x0 = xi[0 + j]*id; - const float x1 = xi[QK4_NL/2 + j]*id; - const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0); - const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1); - dsti->qs[j] = xi0 | (xi1 << 4); - const float v0 = kvalues_iq4nl[xi0]; - const float v1 = kvalues_iq4nl[xi1]; - const float w0 = xi[0 + j]*xi[0 + j]; - const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j]; - sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j]; - sumq2 += w0*v0*v0 + w1*v1*v1; - } - - dsti->d = sumq2 > 0 ? sumqx/sumq2 : d; -} - template static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, @@ -376,43 +139,14 @@ void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_des #endif } -static void ggml_cpy_f16_f32_cuda( - const char * cx, char * cdst, const int ne, - const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { - - const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; - cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); -} - -static void ggml_cpy_f32_f32_cuda( +template +static void ggml_cpy_flt_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; - cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); -} - -static void ggml_cpy_f32_bf16_cuda( - const char * cx, char * cdst, const int ne, - const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { - - const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; - cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); -} - -static void ggml_cpy_f32_f16_cuda( - const char * cx, char * cdst, const int ne, - const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { - - const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; - cpy_f32_f16<<>> + cpy_flt><<>> (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } @@ -544,16 +278,6 @@ static void ggml_cpy_f32_iq4_nl_cuda( (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } -static void ggml_cpy_f16_f16_cuda( - const char * cx, char * cdst, const int ne, - const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { - - const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; - cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); -} - void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection_for_this_node) { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); @@ -609,11 +333,11 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream)); } } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { - ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { - ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { - ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { @@ -640,9 +364,17 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { - ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) { + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { - ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) { + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) { + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) { + ggml_cpy_flt_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else { GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); @@ -667,11 +399,11 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { return nullptr; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { - return (void*) cpy_f32_f16; + return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { - return (void*) cpy_f32_f16; + return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { - return (void*) cpy_f32_f16; + return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { @@ -695,9 +427,17 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { return (void*) cpy_q_f32, QK5_1>; } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { - return (void*) cpy_f32_f16; + return (void*) cpy_flt>; + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) { + return (void*) cpy_flt>; } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { - return (void*) cpy_f32_f16; + return (void*) cpy_flt>; + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) { + return (void*) cpy_flt>; + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) { + return (void*) cpy_flt>; + } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) { + return (void*) cpy_flt>; } else { GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); diff --git a/ggml/src/ggml-cuda/fattn-common.cuh b/ggml/src/ggml-cuda/fattn-common.cuh index 9122fca6c..95e704e39 100644 --- a/ggml/src/ggml-cuda/fattn-common.cuh +++ b/ggml/src/ggml-cuda/fattn-common.cuh @@ -23,33 +23,13 @@ typedef void (* fattn_kernel_t)( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3); + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33); typedef half (*vec_dot_KQ_f16_t)( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds); @@ -745,33 +725,58 @@ void launch_fattn( size_t nb23 = V ? V->nb[3] : nb13; if (need_f16_K && K->type != GGML_TYPE_F16) { - GGML_ASSERT(ggml_is_contiguously_allocated(K)); - K_f16.alloc(ggml_nelements(K)); - to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type); - to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream); - K_data = (char *) K_f16.ptr; - const size_t bs = ggml_blck_size(K->type); const size_t ts = ggml_type_size(K->type); - nb11 = nb11*bs*sizeof(half)/ts; - nb12 = nb12*bs*sizeof(half)/ts; - nb13 = nb13*bs*sizeof(half)/ts; + K_f16.alloc(ggml_nelements(K)); + if (ggml_is_contiguously_allocated(K)) { + to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type); + to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream); + + nb11 = nb11*bs*sizeof(half)/ts; + nb12 = nb12*bs*sizeof(half)/ts; + nb13 = nb13*bs*sizeof(half)/ts; + } else { + GGML_ASSERT(K->nb[0] == ts); + to_fp16_nc_cuda_t to_fp16 = ggml_get_to_fp16_nc_cuda(K->type); + const int64_t s01 = nb11 / ts; + const int64_t s02 = nb12 / ts; + const int64_t s03 = nb13 / ts; + to_fp16(K_data, K_f16.ptr, K->ne[0], K->ne[1], K->ne[2], K->ne[3], s01, s02, s03, main_stream); + + nb11 = K->ne[0] * sizeof(half); + nb12 = K->ne[1] * nb11; + nb13 = K->ne[2] * nb12; + } + K_data = (char *) K_f16.ptr; } if (V && need_f16_V && V->type != GGML_TYPE_F16) { - GGML_ASSERT(ggml_is_contiguously_allocated(V)); - V_f16.alloc(ggml_nelements(V)); - to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type); - to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream); - V_data = (char *) V_f16.ptr; - const size_t bs = ggml_blck_size(V->type); const size_t ts = ggml_type_size(V->type); - nb21 = nb21*bs*sizeof(half)/ts; - nb22 = nb22*bs*sizeof(half)/ts; - nb23 = nb23*bs*sizeof(half)/ts; + V_f16.alloc(ggml_nelements(V)); + if (ggml_is_contiguously_allocated(V)) { + to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type); + to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream); + V_data = (char *) V_f16.ptr; + + nb21 = nb21*bs*sizeof(half)/ts; + nb22 = nb22*bs*sizeof(half)/ts; + nb23 = nb23*bs*sizeof(half)/ts; + } else { + GGML_ASSERT(V->nb[0] == ts); + to_fp16_nc_cuda_t to_fp16 = ggml_get_to_fp16_nc_cuda(V->type); + const int64_t s01 = nb21 / ts; + const int64_t s02 = nb22 / ts; + const int64_t s03 = nb23 / ts; + to_fp16(V_data, V_f16.ptr, V->ne[0], V->ne[1], V->ne[2], V->ne[3], s01, s02, s03, main_stream); + + nb21 = V->ne[0] * sizeof(half); + nb22 = V->ne[1] * nb21; + nb23 = V->ne[2] * nb22; + } + V_data = (char *) V_f16.ptr; } int parallel_blocks = 1; @@ -867,14 +872,11 @@ void launch_fattn( mask ? ((const char *) mask->data) : nullptr, !stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr, scale, max_bias, m0, m1, n_head_log2, logit_softcap, - Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], - K->ne[0], K->ne[1], K->ne[2], K->ne[3], - mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0, - mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0, mask ? mask->nb[3] : 0, - Q->nb[1], Q->nb[2], Q->nb[3], - nb11, nb12, nb13, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], nb11, nb12, nb13, nb21, nb22, nb23, - KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0, + mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0, mask ? mask->nb[3] : 0 ); CUDA_CHECK(cudaGetLastError()); diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh index 6fa2e7729..565853bfe 100644 --- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh @@ -408,7 +408,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( const int stride_K, const int stride_V, const int stride_mask, - const int jt, half2 * const __restrict__ tile_Q, half2 * const __restrict__ tile_K, half2 * const __restrict__ tile_V, @@ -455,7 +454,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( cp_async_wait_all(); __syncthreads(); flash_attn_ext_f16_load_tile - (V_h2 + k_VKQ_0*stride_V, tile_V, nbatch_V2, stride_V); + (V_h2 + int64_t(k_VKQ_0)*stride_V, tile_V, nbatch_V2, stride_V); } else { constexpr bool use_cp_async = nstages == 1; if (ncols2 > 1 || mask_h2) { @@ -471,7 +470,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( if (nstages <= 1) { constexpr bool use_cp_async = nstages == 1; flash_attn_ext_f16_load_tile - (K_h2 + k_VKQ_0*stride_K + k0_start, tile_K, k0_diff, stride_K); + (K_h2 + int64_t(k_VKQ_0)*stride_K + k0_start, tile_K, k0_diff, stride_K); if (use_cp_async) { cp_async_wait_all(); } @@ -715,7 +714,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( (mask_h2 + (k_VKQ_0 + c::nbatch_fa)/2, tile_mask, stride_mask); } flash_attn_ext_f16_load_tile - (K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, nbatch_K2, stride_K); + (K_h2 + int64_t(k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, nbatch_K2, stride_K); } } @@ -732,7 +731,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( if (nstages <= 1 && i0_start < reusable_cutoff) { constexpr bool use_cp_async = nstages == 1; flash_attn_ext_f16_load_tile - (V_h2 + k_VKQ_0*stride_V + i0_start/2, tile_V, i0_diff/2, stride_V); + (V_h2 + int64_t(k_VKQ_0)*stride_V + i0_start/2, tile_V, i0_diff/2, stride_V); if (use_cp_async) { cp_async_wait_all(); } @@ -771,8 +770,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup); GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V); - GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K); - GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K); + GGML_UNUSED(stride_mask); GGML_UNUSED(tile_K); GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B); GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum); GGML_UNUSED(kb0); GGML_UNUSED(tile_Q); @@ -920,7 +918,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( (mask_h2 + kb0_start*c::nbatch_fa/2, tile_mask, stride_mask); } flash_attn_ext_f16_load_tile - (K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, nbatch_K2, stride_K); + (K_h2 + int64_t(kb0_start)*c::nbatch_fa*stride_K, tile_K, nbatch_K2, stride_K); } // Iterate over ne11 == previous tokens: @@ -928,13 +926,13 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( constexpr bool last_iter = false; flash_attn_ext_f16_iter (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, - ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0); + ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0); } { // kb0_start is always < kb0_stop so the last iter can be executed unconditionally. constexpr bool last_iter = true; flash_attn_ext_f16_iter (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, - ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1); + ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1); } // With multi-stage loading there is no __syncthreads at the end of the iter, @@ -1214,33 +1212,13 @@ static __global__ void flash_attn_ext_f16( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #if defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE) // Skip unused kernel variants for faster compilation: @@ -1359,8 +1337,7 @@ static __global__ void flash_attn_ext_f16( GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); - GGML_UNUSED(nb22); GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1); - GGML_UNUSED(ne2); GGML_UNUSED(ne3); + GGML_UNUSED(nb22); GGML_UNUSED(nb23); NO_DEVICE_CODE; #endif // defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE) } diff --git a/ggml/src/ggml-cuda/fattn-tile-f16.cu b/ggml/src/ggml-cuda/fattn-tile-f16.cu index 1f1413288..7661c21ef 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f16.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f16.cu @@ -21,33 +21,13 @@ static __global__ void flash_attn_tile_ext_f16( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) // Skip unused kernel variants for faster compilation: @@ -127,7 +107,7 @@ static __global__ void flash_attn_tile_ext_f16( for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { const int k_KQ = k_KQ_0 + threadIdx.x; - KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; + KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; } } @@ -221,7 +201,7 @@ static __global__ void flash_attn_tile_ext_f16( for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; - KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i]; + KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i]; } } @@ -300,8 +280,7 @@ static __global__ void flash_attn_tile_ext_f16( GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); - GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1); - GGML_UNUSED(ne2); GGML_UNUSED(ne3); + GGML_UNUSED(nb23); NO_DEVICE_CODE; #endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) } diff --git a/ggml/src/ggml-cuda/fattn-tile-f32.cu b/ggml/src/ggml-cuda/fattn-tile-f32.cu index a4965583c..2e2ed5cd5 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f32.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f32.cu @@ -21,33 +21,13 @@ static __global__ void flash_attn_tile_ext_f32( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #ifdef FLASH_ATTN_AVAILABLE // Skip unused kernel variants for faster compilation: @@ -66,8 +46,7 @@ static __global__ void flash_attn_tile_ext_f32( GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); - GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1); - GGML_UNUSED(ne2); GGML_UNUSED(ne3); + GGML_UNUSED(nb23); NO_DEVICE_CODE; return; } @@ -135,7 +114,7 @@ static __global__ void flash_attn_tile_ext_f32( #pragma unroll for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) { - const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; + const half2 tmp = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp); KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp); } @@ -231,8 +210,9 @@ static __global__ void flash_attn_tile_ext_f32( for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; - KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); - KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); + const half2 tmp = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i]; + KV_tmp2[k*(D/2) + i].x = __low2float(tmp); + KV_tmp2[k*(D/2) + i].y = __high2float(tmp); } } @@ -312,7 +292,6 @@ static __global__ void flash_attn_tile_ext_f32( GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23); - GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3); NO_DEVICE_CODE; #endif // FLASH_ATTN_AVAILABLE } diff --git a/ggml/src/ggml-cuda/fattn-vec-f16.cuh b/ggml/src/ggml-cuda/fattn-vec-f16.cuh index b2d469938..f6ef236be 100644 --- a/ggml/src/ggml-cuda/fattn-vec-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-vec-f16.cuh @@ -18,33 +18,13 @@ static __global__ void flash_attn_vec_ext_f16( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) // Skip unused kernel variants for faster compilation: @@ -191,13 +171,16 @@ static __global__ void flash_attn_vec_ext_f16( half2 VKQ[ncols] = {{0.0f, 0.0f}}; + K += blockIdx.y*D * nb11; + V += blockIdx.y*D * nb21; + maskh += blockIdx.y*D; for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) { // Calculate KQ tile and keep track of new maximum KQ values: if (mask) { #pragma unroll for (int j = 0; j < ncols; ++j) { - maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + k_VKQ_0 + tid]; + maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid]; } __syncthreads(); @@ -244,7 +227,7 @@ static __global__ void flash_attn_vec_ext_f16( #pragma unroll for (int j = 0; j < ncols; ++j) { - half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); + half sum = vec_dot_KQ(K + i_KQ*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); sum = warp_reduce_sum((float)sum); if (use_logit_softcap) { @@ -300,14 +283,18 @@ static __global__ void flash_attn_vec_ext_f16( } half2 V_k; - reinterpret_cast(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid); - reinterpret_cast(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid); + reinterpret_cast(V_k.x) = dequantize_1_v(V + (k0 + 0)*nb21, tid); + reinterpret_cast(V_k.y) = dequantize_1_v(V + (k0 + 1)*nb21, tid); #pragma unroll for (int j = 0; j < ncols; ++j) { VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; } } + K += gridDim.y*D * nb11; + V += gridDim.y*D * nb21; + maskh += gridDim.y*D; + __syncthreads(); } @@ -351,8 +338,7 @@ static __global__ void flash_attn_vec_ext_f16( GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); - GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1); - GGML_UNUSED(ne2); GGML_UNUSED(ne3); + GGML_UNUSED(nb23); NO_DEVICE_CODE; #endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) } diff --git a/ggml/src/ggml-cuda/fattn-vec-f32.cuh b/ggml/src/ggml-cuda/fattn-vec-f32.cuh index 405b6f510..6a4bdc0ff 100644 --- a/ggml/src/ggml-cuda/fattn-vec-f32.cuh +++ b/ggml/src/ggml-cuda/fattn-vec-f32.cuh @@ -18,33 +18,13 @@ static __global__ void flash_attn_vec_ext_f32( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #ifdef FLASH_ATTN_AVAILABLE // Skip unused kernel variants for faster compilation: @@ -59,8 +39,7 @@ static __global__ void flash_attn_vec_ext_f32( GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); - GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1); - GGML_UNUSED(ne2); GGML_UNUSED(ne3); + GGML_UNUSED(nb23); NO_DEVICE_CODE; return; } @@ -198,13 +177,16 @@ static __global__ void flash_attn_vec_ext_f32( float VKQ[ncols] = {0.0f}; + K += blockIdx.y*D * nb11; + V += blockIdx.y*D * nb21; + maskh += blockIdx.y*D; for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D) { // Calculate KQ tile and keep track of new maximum KQ values: if (mask) { #pragma unroll for (int j = 0; j < ncols; ++j) { - maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + k_VKQ_0 + tid]); + maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]); } __syncthreads(); @@ -246,7 +228,7 @@ static __global__ void flash_attn_vec_ext_f32( #pragma unroll for (int j = 0; j < ncols; ++j) { - float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]); + float sum = vec_dot_KQ(K + i_KQ*nb11, Q_f2[j], Q_i32[j], Q_ds[j]); sum = warp_reduce_sum(sum); if (use_logit_softcap) { @@ -297,13 +279,17 @@ static __global__ void flash_attn_vec_ext_f32( break; } - const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid); + const float V_ki = dequantize_1_v(V + k*nb21, tid); #pragma unroll for (int j = 0; j < ncols; ++j) { VKQ[j] += V_ki*KQ[j*D + k]; } } + K += gridDim.y*D * nb11; + V += gridDim.y*D * nb21; + maskh += gridDim.y*D; + __syncthreads(); } @@ -348,7 +334,6 @@ static __global__ void flash_attn_vec_ext_f32( GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23); - GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3); NO_DEVICE_CODE; #endif // FLASH_ATTN_AVAILABLE } diff --git a/ggml/src/ggml-cuda/fattn-wmma-f16.cu b/ggml/src/ggml-cuda/fattn-wmma-f16.cu index 741b8781d..c9b083bed 100644 --- a/ggml/src/ggml-cuda/fattn-wmma-f16.cu +++ b/ggml/src/ggml-cuda/fattn-wmma-f16.cu @@ -37,33 +37,13 @@ static __global__ void flash_attn_ext_f16( const float m1, const uint32_t n_head_log2, const float logit_softcap, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int ne32, - const int ne33, - const int nb31, - const int nb32, - const int nb33, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int nb21, - const int nb22, - const int nb23, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { + const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, + const int32_t nb01, const int32_t nb02, const int32_t nb03, + const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, + const int32_t nb11, const int32_t nb12, const int64_t nb13, + const int32_t nb21, const int32_t nb22, const int64_t nb23, + const int32_t ne31, const int32_t ne32, const int32_t ne33, + const int32_t nb31, const int32_t nb32, const int64_t nb33) { #if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE))) // Skip unused kernel variants for faster compilation: if (use_logit_softcap && !(D == 128 || D == 256)) { @@ -197,7 +177,7 @@ static __global__ void flash_attn_ext_f16( #pragma unroll for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) { frag_a_K K_a; - wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV); + wmma::load_matrix_sync(K_a, K_h + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV); #pragma unroll for (int j = 0; j < ncols/frag_n; ++j) { wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]); @@ -344,7 +324,7 @@ static __global__ void flash_attn_ext_f16( const int k = k0 + (threadIdx.y % VKQ_ratio)*16; frag_a_V v_a; - wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV); + wmma::load_matrix_sync(v_a, V_h + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV); #pragma unroll for (int j = 0; j < ncols/frag_n; ++j) { wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]); @@ -451,7 +431,6 @@ static __global__ void flash_attn_ext_f16( GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23); - GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3); NO_DEVICE_CODE; #endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE))) } diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu index 6bc0096cc..d9f161305 100644 --- a/ggml/src/ggml-cuda/fattn.cu +++ b/ggml/src/ggml-cuda/fattn.cu @@ -280,22 +280,12 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size; const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV); - if (GGML_CUDA_CC_IS_AMD(cc)) { #if defined(GGML_HIP_ROCWMMA_FATTN) - if (fp16_mma_available(cc)) { - ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst); - return; - } -#endif // defined(GGML_HIP_ROCWMMA_FATTN) - - // On AMD the tile kernels perform poorly, use the vec kernel instead: - if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) { - ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); - } else { - ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); - } + if (GGML_CUDA_CC_IS_AMD(cc) && fp16_mma_available(cc)) { + ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst); return; } +#endif // defined(GGML_HIP_ROCWMMA_FATTN) if (!fast_fp16_available(cc)) { if (Q->ne[1] <= 8 || Q->ne[0] == 256) { diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 778d5a48b..03c380897 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -55,6 +55,7 @@ #include #include #include +#include #include #include #include @@ -2590,6 +2591,9 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud // Loop over nodes in GGML graph to obtain info needed for CUDA graph cuda_ctx->cuda_graph->cpy_dest_ptrs.clear(); + const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected"; + const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj"; + for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -2611,9 +2615,12 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud #endif } - if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { - // disable CUDA graphs for batch size > 1 for now. - // Changes in batch size or context size can cause changes to the grid size of some kernels. + if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1 && (node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) && (node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true)) { + // disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation + // by means of matching node names. See + // https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and + // https://github.com/huggingface/transformers/blob/bda75b4011239d065de84aa3e744b67ebfa7b245/src/transformers/models/gemma3n/modeling_gemma3n.py#L1773, + // Generally, changes in batch size or context size can cause changes to the grid size of some kernels. use_cuda_graph = false; #ifndef NDEBUG GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); @@ -2759,6 +2766,39 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { } #endif +static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list ops) { + if (!ggml_can_fuse(cgraph, node_idx, ops)) { + return false; + } + + if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) { + const ggml_tensor *rms_norm = cgraph->nodes[node_idx]; + const ggml_tensor *mul = cgraph->nodes[node_idx+1]; + + GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32); + GGML_ASSERT(rms_norm->type == GGML_TYPE_F32); + + //rms norm only supports F32 + if (mul->src[0]->type != GGML_TYPE_F32 || + mul->src[1]->type != GGML_TYPE_F32 || + mul->type != GGML_TYPE_F32) { + return false; + } + + //if rms norm is the B operand, then we don't handle broadcast + if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) { + return false; + } + + //rms_norm kernel assumes contigous rows + if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) { + return false; + } + } + + return true; +} + static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) { // flag used to determine whether it is an integrated_gpu @@ -2768,6 +2808,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. // With the use of CUDA graphs, the execution will be performed by the graph launch. if (!use_cuda_graph || cuda_graph_update_required) { + for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -2775,6 +2816,12 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx continue; } + static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr); + if (!disable_fusion && ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) { + ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]); + i++; + continue; + } #ifndef NDEBUG assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -3226,8 +3273,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g } break; case GGML_OP_SET_ROWS: { -#pragma message("TODO: implement Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)") - return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16) && + return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 || + op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q5_0 || + op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_IQ4_NL) && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_I64; } break; @@ -3235,13 +3283,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g { ggml_type src0_type = op->src[0]->type; ggml_type src1_type = op->src[1]->type; - if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { - return true; - } - if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_BF16) { - return true; - } - if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { + if ((src0_type == GGML_TYPE_F32 || src0_type == GGML_TYPE_BF16 || src0_type == GGML_TYPE_F16) && + (src1_type == GGML_TYPE_F32 || src1_type == GGML_TYPE_BF16 || src1_type == GGML_TYPE_F16) + ) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { @@ -3277,12 +3321,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { return true; } - if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { - return true; - } - if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { - return true; - } if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) { return true; } @@ -3363,7 +3401,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return op->src[0]->ne[1] % 128 == 0; } case GGML_OP_CONT: - return op->src[0]->type != GGML_TYPE_BF16; + return true; case GGML_OP_DIAG_MASK_INF: return true; case GGML_OP_SOFT_MAX: diff --git a/ggml/src/ggml-cuda/im2col.cu b/ggml/src/ggml-cuda/im2col.cu index 86a54e42b..5bb85b480 100644 --- a/ggml/src/ggml-cuda/im2col.cu +++ b/ggml/src/ggml-cuda/im2col.cu @@ -10,7 +10,7 @@ static __global__ void im2col_kernel( return; } - const int64_t ksize = OW * (KH > 1 ? KW : 1); + const int64_t ksize = OW * KH; const int64_t kx = i / ksize; const int64_t kd = kx * ksize; const int64_t ky = (i - kd) / OW; diff --git a/ggml/src/ggml-cuda/norm.cu b/ggml/src/ggml-cuda/norm.cu index 0020dbcec..bddcca51b 100644 --- a/ggml/src/ggml-cuda/norm.cu +++ b/ggml/src/ggml-cuda/norm.cu @@ -104,10 +104,12 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr } } -template +template static __global__ void rms_norm_f32( const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, - const int64_t stride_sample, const float eps) { + const int64_t stride_sample, const float eps, const float * mul = nullptr, const int64_t mul_stride_row = 0, + const int64_t mul_stride_channel = 0, const int64_t mul_stride_sample = 0, const int mul_ncols = 0, + const int mul_nrows = 0, const int mul_nchannels = 0, const int mul_nsamples = 0) { const int nrows = gridDim.x; const int nchannels = gridDim.y; @@ -119,6 +121,13 @@ static __global__ void rms_norm_f32( x += sample*stride_sample + channel*stride_channel + row*stride_row; dst += ((sample*nchannels + channel)*nrows + row)*ncols; + if constexpr (do_multiply) { + const int mul_row = row % mul_nrows; + const int mul_channel = channel % mul_nchannels; + const int mul_sample = sample % mul_nsamples; + mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row; + } + float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { @@ -145,7 +154,12 @@ static __global__ void rms_norm_f32( const float scale = rsqrtf(mean + eps); for (int col = tid; col < ncols; col += block_size) { - dst[col] = scale * x[col]; + if constexpr (do_multiply) { + const int mul_col = col % mul_ncols; + dst[col] = scale * x[col] * mul[mul_col]; + } else { + dst[col] = scale * x[col]; + } } } @@ -310,10 +324,30 @@ static void rms_norm_f32_cuda( const dim3 blocks_num(nrows, nchannels, nsamples); if (ncols < 1024) { const dim3 block_dims(WARP_SIZE, 1, 1); - rms_norm_f32<<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); + rms_norm_f32<<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); + } else { + const dim3 block_dims(1024, 1, 1); + rms_norm_f32<1024, false><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); + } +} + +static void rms_norm_mul_f32_cuda( + const float * x, const float * mul, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples, + const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, + const int64_t mul_stride_row, const int64_t mul_stride_channel, const int64_t mul_stride_sample, + const int mul_ncols, const int mul_nrows, const int mul_nchannels, const int mul_nsamples, + const float eps, cudaStream_t stream) { + const dim3 blocks_num(nrows, nchannels, nsamples); + if (mul == nullptr) { + rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream); + return; + } + if (ncols < 1024) { + const dim3 block_dims(WARP_SIZE, 1, 1); + rms_norm_f32<<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); } else { const dim3 block_dims(1024, 1, 1); - rms_norm_f32<1024><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps); + rms_norm_f32<1024, true><<>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples); } } @@ -407,6 +441,59 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { rms_norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream); } +void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor) { + const ggml_tensor * rms_norm_src = (ggml_tensor *) dst->src[0]; + float eps = 0.0f; + + memcpy(&eps, dst->op_params, sizeof(float)); + + const float * src0_d = (const float *) rms_norm_src->data; + const float * mul_d = nullptr; + const ggml_tensor * mul_src = nullptr; + + if (mul_tensor->src[0] == dst) { + mul_d = (float *) mul_tensor->src[1]->data; + mul_src = mul_tensor->src[1]; + } else if(mul_tensor->src[1] == dst) { + mul_d = (float *) mul_tensor->src[0]->data; + mul_src = mul_tensor->src[0]; + } else { + GGML_ASSERT(false); + } + + float * dst_d = (float *) mul_tensor->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(rms_norm_src->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(mul_tensor->type == GGML_TYPE_F32); + GGML_ASSERT(eps >= 0.0f); + + const int64_t ne00 = rms_norm_src->ne[0]; + const int64_t ne01 = rms_norm_src->ne[1]; + const int64_t ne02 = rms_norm_src->ne[2]; + const int64_t ne03 = rms_norm_src->ne[3]; + + const size_t ts0 = ggml_type_size(rms_norm_src->type); + GGML_ASSERT(rms_norm_src->nb[0] == ts0); + const int64_t s01 = rms_norm_src->nb[1] / ts0; + const int64_t s02 = rms_norm_src->nb[2] / ts0; + const int64_t s03 = rms_norm_src->nb[3] / ts0; + + const size_t ts_mul = ggml_type_size(mul_src->type); + GGML_ASSERT(mul_src->nb[0] == ts_mul); + const int64_t mul_s01 = mul_src->nb[1] / ts_mul; + const int64_t mul_s02 = mul_src->nb[2] / ts_mul; + const int64_t mul_s03 = mul_src->nb[3] / ts_mul; + + const int mul_ncols = mul_src->ne[0]; + const int mul_nrows = mul_src->ne[1]; + const int mul_nchannels = mul_src->ne[2]; + const int mul_nsamples = mul_src->ne[3]; + + rms_norm_mul_f32_cuda(src0_d, mul_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, mul_s01, mul_s02, mul_s03, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, eps, stream); +} + void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * grad = dst->src[0]; // gradients const ggml_tensor * src0f = dst->src[1]; // src0 from forward pass diff --git a/ggml/src/ggml-cuda/norm.cuh b/ggml/src/ggml-cuda/norm.cuh index 706a5660a..7ea7bd4df 100644 --- a/ggml/src/ggml-cuda/norm.cuh +++ b/ggml/src/ggml-cuda/norm.cuh @@ -6,6 +6,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor); + void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/set-rows.cu b/ggml/src/ggml-cuda/set-rows.cu index 58cee9244..b2acdf855 100644 --- a/ggml/src/ggml-cuda/set-rows.cu +++ b/ggml/src/ggml-cuda/set-rows.cu @@ -1,26 +1,87 @@ #include "set-rows.cuh" +#include "cpy-utils.cuh" typedef void (*set_rows_kernel_t)(const char * src, char * dst); template -__device__ void set_rows_1(const src_t * src_f, dst_t * dst_f) { - GGML_UNUSED(src_f); - GGML_UNUSED(dst_f); +__device__ __forceinline__ void set_rows_1(const src_t * src_f, dst_t * dst_f) { + convert_flt(src_f, dst_f); } -template<> -__device__ __forceinline__ void set_rows_1(const float * src_f, half * dst_h) { - *dst_h = __float2half(*src_f); -} +// Generic quantized set_rows kernel template +template +static __global__ void k_set_rows_quant( + const float * __restrict__ src0, const int64_t * __restrict__ src1, block_type * __restrict__ dst, + const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03, + const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13, + const int64_t s01, const int64_t s02, const int64_t s03, + const int64_t s10, const int64_t s11, const int64_t s12, + const int64_t s1, const int64_t s2, const int64_t s3) { + + const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x; + const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk; + + if (i >= ne_total) { + return; + } + + const int64_t i_base = i * qk; + const int64_t i03 = i_base / (ne00 * ne01 * ne02); + const int64_t i02 = (i_base - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); + const int64_t i01 = (i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00; + const int64_t i00 = i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00; + + const int64_t i12 = i03 % ne12; + const int64_t i11 = i02 % ne11; + const int64_t i10 = i01; -template<> -__device__ __forceinline__ void set_rows_1(const float * src_f, nv_bfloat16 * dst_b) { - *dst_b = *src_f; + const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12); + + const float * src0_row = src0 + i01*s01 + i02*s02 + i03*s03; + block_type * dst_row_ptr = dst + (dst_row*s1 + i02*s2 + i03*s3) / sizeof(block_type); + + const float * src_block = src0_row + i00; + block_type * dst_block = dst_row_ptr + i00 / qk; + + quantize_func(src_block, dst_block); } -template<> -__device__ __forceinline__ void set_rows_1(const float * src_f, float * dst_f) { - *dst_f = *src_f; +// Template dispatch function for quantized set_rows +template +static void set_rows_cuda_quant( + const float * src0_d, const int64_t * src1_d, block_type * dst_d, + const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03, + const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13, + const size_t nb01, const size_t nb02, const size_t nb03, + const size_t nb10, const size_t nb11, const size_t nb12, + const size_t nb1, const size_t nb2, const size_t nb3, + cudaStream_t stream) { + + GGML_ASSERT(ne00 % qk == 0); + const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk; + const int num_blocks = (ne_total + CUDA_SET_ROWS_BLOCK_SIZE - 1) / CUDA_SET_ROWS_BLOCK_SIZE; + const dim3 block_size(CUDA_SET_ROWS_BLOCK_SIZE); + const dim3 grid_size(num_blocks); + + const int64_t s01 = nb01/sizeof(float); + const int64_t s02 = nb02/sizeof(float); + const int64_t s03 = nb03/sizeof(float); + const int64_t s10 = nb10/sizeof(int64_t); + const int64_t s11 = nb11/sizeof(int64_t); + const int64_t s12 = nb12/sizeof(int64_t); + const int64_t s1 = nb1; + const int64_t s2 = nb2; + const int64_t s3 = nb3; + + if (ne_total > 0) { + k_set_rows_quant<<>>( + src0_d, src1_d, dst_d, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + s01, s02, s03, + s10, s11, s12, + s1, s2, s3); + } } template @@ -145,7 +206,67 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { nb1, nb2, nb3, stream ); + } else if (dst->type == GGML_TYPE_Q4_0) { + set_rows_cuda_quant( + src0_d, src1_d, (block_q4_0*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); + } else if (dst->type == GGML_TYPE_Q4_1) { + set_rows_cuda_quant( + src0_d, src1_d, (block_q4_1*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); + } else if (dst->type == GGML_TYPE_Q5_0) { + set_rows_cuda_quant( + src0_d, src1_d, (block_q5_0*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); + } else if (dst->type == GGML_TYPE_Q5_1) { + set_rows_cuda_quant( + src0_d, src1_d, (block_q5_1*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); + } else if (dst->type == GGML_TYPE_Q8_0) { + set_rows_cuda_quant( + src0_d, src1_d, (block_q8_0*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); + } else if (dst->type == GGML_TYPE_IQ4_NL) { + set_rows_cuda_quant( + src0_d, src1_d, (block_iq4_nl*)dst->data, + ne00, ne01, ne02, ne03, + ne10, ne11, ne12, ne13, + nb01, nb02, nb03, + nb10, nb11, nb12, + nb1, nb2, nb3, + stream + ); } else { - GGML_ABORT("unsupported type"); + GGML_ABORT("unsupported type %s", ggml_type_name(dst->type)); } } diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index 4972558c9..a2e30994c 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -73,6 +73,22 @@ static inline int ggml_up(int n, int m) { return (n + m - 1) & ~(m - 1); } +// TODO: move to ggml.h? +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + // // logging // diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index 752d55c21..b7b3fc49a 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -126,6 +126,7 @@ typedef struct { uint64_t nb2; uint64_t nb3; uint64_t offs; + uint64_t o1[8]; } ggml_metal_kargs_bin; typedef struct { @@ -240,7 +241,7 @@ typedef struct { float max_bias; float m0; float m1; - uint16_t n_head_log2; + int32_t n_head_log2; float logit_softcap; } ggml_metal_kargs_flash_attn_ext; @@ -377,8 +378,16 @@ typedef struct { typedef struct { int32_t ne00; int32_t ne00_4; - uint64_t nb01; + uint64_t nb1; + uint64_t nb2; + uint64_t nb3; float eps; + int32_t nef1[3]; + int32_t nef2[3]; + int32_t nef3[3]; + uint64_t nbf1[3]; + uint64_t nbf2[3]; + uint64_t nbf3[3]; } ggml_metal_kargs_rms_norm; typedef struct { @@ -484,7 +493,7 @@ typedef struct { float max_bias; float m0; float m1; - uint32_t n_head_log2; + int32_t n_head_log2; } ggml_metal_kargs_soft_max; typedef struct { diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index 44ddc69d0..dc391a0d4 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -55,6 +55,12 @@ bool has_residency_sets; bool has_bfloat; bool use_bfloat; + bool use_fusion; + + int debug_fusion; + + // how many times a given op was fused + uint64_t fuse_cnt[GGML_OP_COUNT]; size_t max_size; @@ -69,6 +75,9 @@ /*.has_residency_sets =*/ false, /*.has_bfloat =*/ false, /*.use_bfloat =*/ false, + /*.use_fusion =*/ true, + /*.debug_fusion =*/ 0, + /*.fuse_cnt =*/ { 0 }, /*.max_size =*/ 0, /*.name =*/ "", }; @@ -83,16 +92,14 @@ if (ctx->mtl_device == nil) { ctx->mtl_device = MTLCreateSystemDefaultDevice(); - } - if (ctx->mtl_device) { ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; #if defined(GGML_METAL_HAS_RESIDENCY_SETS) - ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == NULL; + ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil; #endif ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; @@ -103,6 +110,14 @@ #else ctx->use_bfloat = false; #endif + ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil; + + { + const char * val = getenv("GGML_METAL_FUSION_DEBUG"); + ctx->debug_fusion = val ? atoi(val) : 0; + } + + memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt)); ctx->max_size = ctx->mtl_device.maxBufferLength; @@ -122,6 +137,18 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte ctx->mtl_device_ref_count--; if (ctx->mtl_device_ref_count == 0) { + if (ctx->debug_fusion > 0) { + fprintf(stderr, "%s: fusion stats:\n", __func__); + for (int i = 0; i < GGML_OP_COUNT; i++) { + if (ctx->fuse_cnt[i] == 0) { + continue; + } + + // note: cannot use ggml_log here + fprintf(stderr, "%s: - %s: %" PRIu64 "\n", __func__, ggml_op_name((enum ggml_op) i), ctx->fuse_cnt[i]); + } + } + if (ctx->mtl_lock) { [ctx->mtl_lock release]; ctx->mtl_lock = nil; @@ -147,13 +174,27 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_ADD, - GGML_METAL_KERNEL_TYPE_ADD_ROW, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_2, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_3, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_4, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_5, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_6, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_7, + GGML_METAL_KERNEL_TYPE_ADD_FUSE_8, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7, + GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8, GGML_METAL_KERNEL_TYPE_SUB, - GGML_METAL_KERNEL_TYPE_SUB_ROW, + GGML_METAL_KERNEL_TYPE_SUB_ROW_C4, GGML_METAL_KERNEL_TYPE_MUL, - GGML_METAL_KERNEL_TYPE_MUL_ROW, + GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, GGML_METAL_KERNEL_TYPE_DIV, - GGML_METAL_KERNEL_TYPE_DIV_ROW, + GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, GGML_METAL_KERNEL_TYPE_REPEAT_F32, GGML_METAL_KERNEL_TYPE_REPEAT_F16, GGML_METAL_KERNEL_TYPE_REPEAT_I32, @@ -218,6 +259,8 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, GGML_METAL_KERNEL_TYPE_RMS_NORM, + GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL, + GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD, GGML_METAL_KERNEL_TYPE_L2_NORM, GGML_METAL_KERNEL_TYPE_GROUP_NORM, GGML_METAL_KERNEL_TYPE_NORM, @@ -1135,13 +1178,27 @@ @implementation GGMLMetalClass // simd_sum and simd_max requires MTLGPUFamilyApple7 GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_2, add_fuse_2, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_3, add_fuse_3, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_4, add_fuse_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_5, add_fuse_5, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_6, add_fuse_6, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_7, add_fuse_7, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_8, add_fuse_8, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4, add_row_c4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2, add_row_c4_fuse_2, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3, add_row_c4_fuse_3, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4, add_row_c4_fuse_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5, add_row_c4_fuse_5, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6, add_row_c4_fuse_6, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7, add_row_c4_fuse_7, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8, add_row_c4_fuse_8, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW, sub_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW_C4, sub_row_c4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, mul_row_c4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, div_row_c4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true); @@ -1206,6 +1263,8 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, set_rows_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, set_rows_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL, rms_norm_mul, has_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD, rms_norm_mul_add, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); @@ -1893,7 +1952,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex } } -static bool ggml_metal_encode_node( +static int ggml_metal_encode_node( ggml_backend_t backend, int idx, id encoder, @@ -1903,7 +1962,10 @@ static bool ggml_metal_encode_node( struct ggml_cgraph * gf = ctx->gf; - struct ggml_tensor * node = ggml_graph_node(gf, idx); + enum ggml_op ops[8]; + + struct ggml_tensor ** nodes = ggml_graph_nodes(gf) + idx; + struct ggml_tensor * node = nodes[0]; //GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op)); @@ -1913,7 +1975,7 @@ static bool ggml_metal_encode_node( struct ggml_tensor * dst = node; if (ggml_is_empty(dst)) { - return true; + return 1; } switch (dst->op) { @@ -1924,7 +1986,7 @@ static bool ggml_metal_encode_node( case GGML_OP_PERMUTE: { // noop -> next node - } return true; + } return 1; default: { } break; @@ -1991,6 +2053,8 @@ static bool ggml_metal_encode_node( id id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil; id id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil; + int n_fuse = 1; + #if 0 GGML_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); if (src0) { @@ -2062,37 +2126,15 @@ static bool ggml_metal_encode_node( GGML_ASSERT(src0t == GGML_TYPE_F32); GGML_ASSERT(src1t == GGML_TYPE_F32); + GGML_ASSERT(ggml_is_contiguous_rows(src0)); + GGML_ASSERT(ggml_is_contiguous_rows(src1)); + const size_t offs = 0; bool bcast_row = false; id pipeline = nil; - if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { - GGML_ASSERT(ggml_is_contiguous(src0)); - - // src1 is a row - GGML_ASSERT(ne11 == 1); - - switch (dst->op) { - case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; - case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW].pipeline; break; - case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; - case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; - default: GGML_ABORT("fatal error"); - } - - bcast_row = true; - } else { - switch (dst->op) { - case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; - case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break; - case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; - case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; - default: GGML_ABORT("fatal error"); - } - } - ggml_metal_kargs_bin args = { /*.ne00 =*/ ne00, /*.ne01 =*/ ne01, @@ -2119,12 +2161,117 @@ static bool ggml_metal_encode_node( /*.nb2 =*/ nb2, /*.nb3 =*/ nb3, /*.offs =*/ offs, + /*.o1 =*/ { offs_src1 }, }; + // c[0] = add(a, b[0]) + // c[1] = add(c[0], b[1]) + // c[2] = add(c[1], b[2]) + // ... + if (ctx_dev->use_fusion) { + ops[0] = GGML_OP_ADD; + ops[1] = GGML_OP_ADD; + ops[2] = GGML_OP_ADD; + ops[3] = GGML_OP_ADD; + ops[4] = GGML_OP_ADD; + ops[5] = GGML_OP_ADD; + ops[6] = GGML_OP_ADD; + ops[7] = GGML_OP_ADD; + + size_t offs_fuse; + id id_fuse; + + for (n_fuse = 0; n_fuse <= 6; ++n_fuse) { + if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) { + break; + } + + if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) { + break; + } + + // b[0] === b[1] === ... + if (!ggml_are_same_layout(nodes[n_fuse]->src[1], nodes[n_fuse + 1]->src[1])) { + break; + } + + // only fuse nodes if src1 is in the same Metal buffer + id_fuse = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse); + if (id_fuse != id_src1) { + break; + } + + ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++; + + args.o1[n_fuse + 1] = offs_fuse; + } + + ++n_fuse; + + if (ctx_dev->debug_fusion > 1 && n_fuse > 1) { + GGML_LOG_DEBUG("%s: fuse: ADD x %d\n", __func__, n_fuse); + } + } + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + switch (dst->op) { + case GGML_OP_ADD: + { + switch (n_fuse) { + case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4 ].pipeline; break; + case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2].pipeline; break; + case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3].pipeline; break; + case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4].pipeline; break; + case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5].pipeline; break; + case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6].pipeline; break; + case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7].pipeline; break; + case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8].pipeline; break; + default: GGML_ABORT("fatal error"); + } + } break; + case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW_C4].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW_C4].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW_C4].pipeline; break; + default: GGML_ABORT("fatal error"); + } + + bcast_row = true; + } else { + switch (dst->op) { + case GGML_OP_ADD: + { + switch (n_fuse) { + case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD ].pipeline; break; + case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_2].pipeline; break; + case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_3].pipeline; break; + case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_4].pipeline; break; + case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_5].pipeline; break; + case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_6].pipeline; break; + case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_7].pipeline; break; + case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_8].pipeline; break; + default: GGML_ABORT("fatal error"); + } + } break; + case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; + default: GGML_ABORT("fatal error"); + } + } + + if (n_fuse > 1) { + id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst); + } + [encoder setComputePipelineState:pipeline]; [encoder setBytes:&args length:sizeof(args) atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2]; + [encoder setBuffer:id_src1 offset:0 atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; if (bcast_row) { @@ -2132,7 +2279,11 @@ static bool ggml_metal_encode_node( [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } else { - const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); + int nth = 32; + + while (16*nth < ne0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) { + nth *= 2; + } [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } @@ -2257,12 +2408,13 @@ static bool ggml_metal_encode_node( /*.nb2 =*/ pnb2, /*.nb3 =*/ pnb3, /*.offs =*/ offs, + /*.o1 =*/ { offs_src1}, }; [encoder setComputePipelineState:pipeline]; [encoder setBytes:&args length:sizeof(args) atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2]; + [encoder setBuffer:id_src1 offset:0 atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); @@ -2764,7 +2916,7 @@ static bool ggml_metal_encode_node( id h_src0 = h_src0 = ggml_metal_mem_pool_alloc(mem_pool, ggml_nbytes(src0)); if (!h_src0) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, ggml_nbytes(src0)); - return false; + return 0; } offs_src0 = 0; @@ -3640,7 +3792,7 @@ static bool ggml_metal_encode_node( id h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1); if (!h_src1) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1); - return false; + return 0; } const int64_t neh0 = ne0; @@ -3656,7 +3808,7 @@ static bool ggml_metal_encode_node( id h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst); if (!h_dst) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst); - return false; + return 0; } // tokens per expert @@ -3664,7 +3816,7 @@ static bool ggml_metal_encode_node( id h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe); if (!h_tpe) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tpe); - return false; + return 0; } // id map @@ -3673,7 +3825,7 @@ static bool ggml_metal_encode_node( id h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids); if (!h_ids) { GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids); - return false; + return 0; } { @@ -4105,12 +4257,95 @@ static bool ggml_metal_encode_node( case GGML_OP_RMS_NORM: { GGML_ASSERT(ne00 % 4 == 0); - GGML_ASSERT(ggml_is_contiguous_1(src0)); + GGML_ASSERT(ggml_is_contiguous_rows(src0)); float eps; memcpy(&eps, dst->op_params, sizeof(float)); - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline; + ggml_metal_kargs_rms_norm args = { + /*.ne00 =*/ ne00, + /*.ne00_4 =*/ ne00/4, + /*.nb1 =*/ nb1, + /*.nb2 =*/ nb2, + /*.nb3 =*/ nb3, + /*.eps =*/ eps, + /*.nef1 =*/ { ne01 }, + /*.nef2 =*/ { ne02 }, + /*.nef3 =*/ { ne03 }, + /*.nbf1 =*/ { nb01 }, + /*.nbf2 =*/ { nb02 }, + /*.nbf3 =*/ { nb03 }, + }; + + size_t offs_fuse[2] = { 0, 0 }; + id id_fuse[2] = { id_src0, id_src0 }; + + // d[0] = rms_norm(a) + // d[1] = mul(d[0], b) + // d[2] = add(d[1], c) + if (ctx_dev->use_fusion) { + ops[0] = GGML_OP_RMS_NORM; + ops[1] = GGML_OP_MUL; + ops[2] = GGML_OP_ADD; + + for (n_fuse = 0; n_fuse <= 1; ++n_fuse) { + if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) { + break; + } + + if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) { + break; + } + + if (nodes[n_fuse + 1]->src[1]->ne[0] != node->ne[0]) { + break; + } + + if (!ggml_is_contiguous_rows(nodes[n_fuse + 1]->src[1])) { + break; + } + + if (nodes[n_fuse + 1]->type != GGML_TYPE_F32) { + break; + } + + ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++; + + id_fuse[n_fuse] = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse[n_fuse]); + + args.nef1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[1]; + args.nef2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[2]; + args.nef3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[3]; + + args.nbf1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[1]; + args.nbf2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[2]; + args.nbf3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[3]; + } + + ++n_fuse; + + if (ctx_dev->debug_fusion > 1 && n_fuse > 1) { + if (n_fuse == 2) { + GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL\n", __func__); + } + if (n_fuse == 3) { + GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL + ADD\n", __func__); + } + } + } + + if (n_fuse > 1) { + id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst); + } + + id pipeline; + + switch (n_fuse) { + case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM ].pipeline; break; + case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL ].pipeline; break; + case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD].pipeline; break; + default: GGML_ABORT("unsupported n_fuse = %d\n", n_fuse); + } int nth = 32; // SIMD width @@ -4121,23 +4356,16 @@ static bool ggml_metal_encode_node( nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup); nth = MIN(nth, ne00/4); - ggml_metal_kargs_rms_norm args = { - /*.ne00 =*/ ne00, - /*.ne00_4 =*/ ne00/4, - /*.nb01 =*/ nb01, - /*.eps =*/ eps, - }; - [encoder setComputePipelineState:pipeline]; - [encoder setBytes:&args length:sizeof(args) atIndex:0]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&args length:sizeof(args) atIndex:0]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; + [encoder setBuffer:id_fuse[0] offset:offs_fuse[0] atIndex:2]; + [encoder setBuffer:id_fuse[1] offset:offs_fuse[1] atIndex:3]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; - const int64_t nrows = ggml_nrows(src0); - - [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_L2_NORM: { @@ -5532,7 +5760,7 @@ static bool ggml_metal_encode_node( } } - return true; + return n_fuse; } static enum ggml_status ggml_metal_graph_compute( @@ -6038,20 +6266,22 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { struct ggml_metal_mem_pool * mem_pool = ctx->cmd_bufs[cb_idx].mem_pool; ggml_metal_mem_pool_reset(mem_pool); - for (int idx = node_start; idx < node_end; ++idx) { + for (int idx = node_start; idx < node_end;) { if (should_capture) { [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]]; } - const bool res = ggml_metal_encode_node(backend, idx, encoder, mem_pool); + const int res = ggml_metal_encode_node(backend, idx, encoder, mem_pool); if (should_capture) { [encoder popDebugGroup]; } - if (!res) { + if (res == 0) { break; } + + idx += res; } [encoder endEncoding]; diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 13235e288..f62b9ad54 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -832,7 +832,8 @@ enum ggml_sort_order { // general-purpose kernel for addition, subtraction, multiplication and division of two tensors // pros: works for non-contiguous tensors, supports broadcast across all dims // cons: not very efficient -kernel void kernel_add( +template +kernel void kernel_add_fuse_impl( constant ggml_metal_kargs_bin & args, device const char * src0, device const char * src1, @@ -848,16 +849,39 @@ kernel void kernel_add( const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; - device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; - device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; - device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; + device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs); + device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs); + + device const float * src1_ptr[F]; + for (short j = 0; j < F; ++j) { + src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11); + } for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; - *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) + *((device float *)(src1_ptr + i10*args.nb10)); + + float res = src0_ptr[i0]; + +#pragma unroll + for (short j = 0; j < F; ++j) { + res += src1_ptr[j][i10]; + } + + dst_ptr[i0] = res; } } +typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t; + +template [[host_name("kernel_add")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>; +template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>; +template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>; +template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>; +template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>; +template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>; +template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>; +template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>; + kernel void kernel_sub( constant ggml_metal_kargs_bin & args, device const char * src0, @@ -875,7 +899,7 @@ kernel void kernel_sub( const int i11 = i01%args.ne11; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; - device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; + device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0]; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { @@ -900,9 +924,9 @@ kernel void kernel_mul( const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; - device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01; - device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; - device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1; + device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; + device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0]; + device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; @@ -926,9 +950,9 @@ kernel void kernel_div( const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; - device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01; - device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; - device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1; + device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; + device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0]; + device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; @@ -970,46 +994,145 @@ template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat // assumption: src1 is a row // broadcast src1 into src0 -kernel void kernel_add_row( +template +kernel void kernel_add_row_c4_fuse_impl( constant ggml_metal_kargs_bin & args, - device const float4 * src0, - device const float4 * src1, - device float4 * dst, + device const char * src0, + device const char * src1, + device char * dst, uint tpig[[thread_position_in_grid]]) { + const uint nb = args.ne00/4; - dst[tpig] = src0[tpig] + src1[tpig % nb]; + const uint i = tpig % nb; + + device const float4 * src0_row = (device const float4 *) (src0); + device float4 * dst_row = (device float4 *) (dst); + + device const float4 * src1_row[F]; + for (short j = 0; j < F; ++j) { + src1_row[j] = (device const float4 *) (src1 + args.o1[j]); + } + + float4 res = src0_row[tpig]; + +#pragma unroll(F) + for (short j = 0; j < F; ++j) { + res += src1_row[j][i]; + } + + dst_row[tpig] = res; } -kernel void kernel_sub_row( +typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t; + +template [[host_name("kernel_add_row_c4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>; +template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>; +template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>; +template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>; +template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>; +template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>; +template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>; +template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>; + +template +kernel void kernel_sub_row_c4_fuse_impl( constant ggml_metal_kargs_bin & args, - device const float4 * src0, - device const float4 * src1, - device float4 * dst, + device const char * src0, + device const char * src1, + device char * dst, uint tpig[[thread_position_in_grid]]) { + const uint nb = args.ne00/4; - dst[tpig] = src0[tpig] - src1[tpig % nb]; + const uint i = tpig % nb; + + device const float4 * src0_row = (device const float4 *) (src0); + device float4 * dst_row = (device float4 *) (dst); + + device const float4 * src1_row[F]; + for (short j = 0; j < F; ++j) { + src1_row[j] = (device const float4 *) (src1 + args.o1[j]); + } + + float4 res = src0_row[tpig]; + +#pragma unroll(F) + for (short j = 0; j < F; ++j) { + res -= src1_row[j][i]; + } + + dst_row[tpig] = res; } -kernel void kernel_mul_row( +typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t; + +template [[host_name("kernel_sub_row_c4")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>; + +template +kernel void kernel_mul_row_c4_fuse_impl( constant ggml_metal_kargs_bin & args, - device const float4 * src0, - device const float4 * src1, - device float4 * dst, + device const char * src0, + device const char * src1, + device char * dst, uint tpig[[thread_position_in_grid]]) { + const uint nb = args.ne00/4; - dst[tpig] = src0[tpig] * src1[tpig % nb]; + const uint i = tpig % nb; + + device const float4 * src0_row = (device const float4 *) (src0); + device float4 * dst_row = (device float4 *) (dst); + + device const float4 * src1_row[F]; + for (short j = 0; j < F; ++j) { + src1_row[j] = (device const float4 *) (src1 + args.o1[j]); + } + + float4 res = src0_row[tpig]; + +#pragma unroll(F) + for (short j = 0; j < F; ++j) { + res *= src1_row[j][i]; + } + + dst_row[tpig] = res; } -kernel void kernel_div_row( +typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t; + +template [[host_name("kernel_mul_row_c4")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>; + +template +kernel void kernel_div_row_c4_fuse_impl( constant ggml_metal_kargs_bin & args, - device const float4 * src0, - device const float4 * src1, - device float4 * dst, + device const char * src0, + device const char * src1, + device char * dst, uint tpig[[thread_position_in_grid]]) { + const uint nb = args.ne00/4; - dst[tpig] = src0[tpig] / src1[tpig % nb]; + const uint i = tpig % nb; + + device const float4 * src0_row = (device const float4 *) (src0); + device float4 * dst_row = (device float4 *) (dst); + + device const float4 * src1_row[F]; + for (short j = 0; j < F; ++j) { + src1_row[j] = (device const float4 *) (src1 + args.o1[j]); + } + + float4 res = src0_row[tpig]; + +#pragma unroll(F) + for (short j = 0; j < F; ++j) { + res /= src1_row[j][i]; + } + + dst_row[tpig] = res; } +typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t; + +template [[host_name("kernel_div_row_c4")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>; + kernel void kernel_scale( device const float * src0, device float * dst, @@ -2116,26 +2239,39 @@ kernel void kernel_norm( } } -kernel void kernel_rms_norm( +// F == 1 : rms_norm (no fuse) +// F == 2 : rms_norm + mul +// F == 3 : rms_norm + mul + add +template +kernel void kernel_rms_norm_fuse_impl( constant ggml_metal_kargs_rms_norm & args, device const char * src0, + device const char * src1_0, + device const char * src1_1, device char * dst, threadgroup float * shmem_f32 [[threadgroup(0)]], - uint tgpig[[threadgroup_position_in_grid]], - ushort tpitg[[thread_position_in_threadgroup]], - ushort sgitg[[simdgroup_index_in_threadgroup]], - ushort tiisg[[thread_index_in_simdgroup]], - ushort ntg[[threads_per_threadgroup]]) { + uint3 tgpig[[threadgroup_position_in_grid]], + ushort3 tpitg[[thread_position_in_threadgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort3 ntg[[threads_per_threadgroup]]) { if (sgitg == 0) { shmem_f32[tiisg] = 0.0f; } - device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01); + const int i01 = tgpig.x; + const int i02 = tgpig.y; + const int i03 = tgpig.z; + + device const float4 * x = (device const float4 *) (src0 + i03*args.nbf3[0] + i02*args.nbf2[0] + i01*args.nbf1[0]); + + device const float4 * f0 = (device const float4 *) (src1_0 + (i03%args.nef3[1])*args.nbf3[1] + (i02%args.nef2[1])*args.nbf2[1] + (i01%args.nef1[1])*args.nbf1[1]); + device const float4 * f1 = (device const float4 *) (src1_1 + (i03%args.nef3[2])*args.nbf3[2] + (i02%args.nef2[2])*args.nbf2[2] + (i01%args.nef1[2])*args.nbf1[2]); float sumf = 0.0f; // parallel sum - for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { + for (int i00 = tpitg.x; i00 < args.ne00_4; i00 += ntg.x) { sumf += dot(x[i00], x[i00]); } sumf = simd_sum(sumf); @@ -2154,12 +2290,26 @@ kernel void kernel_rms_norm( const float mean = sumf/args.ne00; const float scale = 1.0f/sqrt(mean + args.eps); - device float4 * y = (device float4 *) dst + tgpig*args.ne00_4; - for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { - y[i00] = x[i00] * scale; + device float4 * y = (device float4 *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1); + for (int i00 = tpitg.x; i00 < args.ne00_4; i00 += ntg.x) { + if (F == 1) { + y[i00] = (x[i00]*scale); + } + if (F == 2) { + y[i00] = (x[i00]*scale)*f0[i00]; + } + if (F == 3) { + y[i00] = (x[i00]*scale)*f0[i00] + f1[i00]; + } } } +typedef decltype(kernel_rms_norm_fuse_impl<1>) kernel_rms_norm_fuse_t; + +template [[host_name("kernel_rms_norm")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<1>; +template [[host_name("kernel_rms_norm_mul")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<2>; +template [[host_name("kernel_rms_norm_mul_add")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<3>; + kernel void kernel_l2_norm( constant ggml_metal_kargs_l2_norm & args, device const char * src0, diff --git a/ggml/src/ggml-opencl/CMakeLists.txt b/ggml/src/ggml-opencl/CMakeLists.txt index ec5d8cf59..015fa8f06 100644 --- a/ggml/src/ggml-opencl/CMakeLists.txt +++ b/ggml/src/ggml-opencl/CMakeLists.txt @@ -105,6 +105,8 @@ set(GGML_OPENCL_KERNELS pad repeat mul_mat_f16_f32 + conv2d + conv2d_f16_f32 ) foreach (K ${GGML_OPENCL_KERNELS}) diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index 338825915..63ac4a989 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -390,6 +390,9 @@ struct ggml_backend_opencl_context { cl_program program_tanh; cl_program program_upscale; cl_program program_concat; + cl_program program_conv_2d_f16; + cl_program program_conv_2d_f32; + cl_program program_conv_2d_f16_f32; cl_program program_tsembd; cl_program program_mul_mv_id_q4_0_f32_8x_flat; @@ -441,6 +444,9 @@ struct ggml_backend_opencl_context { cl_kernel kernel_upscale_bilinear; cl_kernel kernel_concat_f32_contiguous; cl_kernel kernel_concat_f32_non_contiguous; + cl_kernel kernel_conv_2d_f16; + cl_kernel kernel_conv_2d_f32; + cl_kernel kernel_conv_2d_f16_f32; cl_kernel kernel_timestep_embedding; cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat; @@ -1478,6 +1484,47 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve GGML_LOG_CONT("."); } + // conv2d + { + #ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "conv2d.cl.h" + }; + const std::string kernel_src_f16_f32 { + #include "conv2d_f16_f32.cl.h" + }; + #else + const std::string kernel_src = read_file("conv2d.cl"); + const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl"); + #endif + if (!kernel_src.empty()) { + backend_ctx->program_conv_2d_f16 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str()); + CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err)); + GGML_LOG_CONT("."); + backend_ctx->program_conv_2d_f32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n"); + backend_ctx->program_conv_2d_f16 = nullptr; + backend_ctx->kernel_conv_2d_f16 = nullptr; + backend_ctx->program_conv_2d_f32 = nullptr; + backend_ctx->kernel_conv_2d_f32 = nullptr; + } + if (!kernel_src_f16_f32.empty()) { + backend_ctx->program_conv_2d_f16_f32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n"); + backend_ctx->program_conv_2d_f16_f32 = nullptr; + backend_ctx->kernel_conv_2d_f16_f32 = nullptr; + } + } + // mul_mv_id_q4_0_f32_8x_flat { #ifdef GGML_OPENCL_EMBED_KERNELS @@ -2361,6 +2408,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te op->src[0]->ne[3] == 1 && op->ne[3] == 1; case GGML_OP_UPSCALE: return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; + case GGML_OP_CONV_2D: + return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) || + (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) || + (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32); case GGML_OP_CONCAT: return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; case GGML_OP_TIMESTEP_EMBEDDING: @@ -4998,6 +5049,82 @@ static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_ten backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst); } +static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_TENSOR_BINARY_OP_LOCALS; + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13; + const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1; + + const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1]; + const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3]; + const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5]; + + const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type); + const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type); + const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type); + + const int64_t NPQ = (int64_t)N * OW * OH; + + const uint32_t BS_K = 64; + const uint32_t BS_NPQ = 64; + const uint32_t BS_CRS = 16; + const uint32_t VEC_SIZE = 4; + + const uint32_t TS_K = 4; + const uint32_t TS_NPQ = 8; + + const uint32_t WG_K = BS_K / TS_K; + const uint32_t WG_NPQ = BS_NPQ / TS_NPQ; + + auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; }; + const uint32_t NB_K = splitWork(Cout, BS_K); + const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ); + + cl_kernel kernel; + size_t shmem_size; + + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { + kernel = backend_ctx->kernel_conv_2d_f16; + shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4)); + } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_conv_2d_f32; + shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4)); + } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_conv_2d_f16_f32; + shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4)); + } else { + GGML_ASSERT(false && "Unsupported data type combination for conv2d"); + } + + cl_uint idx = 0; + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13)); + CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3)); + + size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 }; + size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 }; + + backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst); +} + static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0); GGML_ASSERT(src0->extra); @@ -6752,6 +6879,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor } ggml_cl_upscale(backend, tensor->src[0], tensor); return true; + case GGML_OP_CONV_2D: + if (!any_on_device) { + return false; + } + func = ggml_cl_conv_2d; + break; case GGML_OP_CONCAT: if (!any_on_device) { return false; diff --git a/ggml/src/ggml-opencl/kernels/conv2d.cl b/ggml/src/ggml-opencl/kernels/conv2d.cl new file mode 100644 index 000000000..e339c90cf --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/conv2d.cl @@ -0,0 +1,185 @@ +#ifdef USE_FP16 +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#define T_FLOAT half +#define T_FLOAT4 half4 +#define VSTORE_T_FLOAT4(data, offset, p) vstore_half4_rte(data, offset, p) +#else +#define T_FLOAT float +#define T_FLOAT4 float4 +#define VSTORE_T_FLOAT4(data, offset, p) vstore4(data, offset, p) +#endif + +#if defined(cl_qcom_reqd_sub_group_size) +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#else +#define REQD_SUBGROUP_SIZE_128 +#endif + +#define T_ACCUM float4 +#define VEC_SIZE 4 + +#define BS_K 64 +#define BS_NPQ 64 +#define BS_CRS 16 + +#define TS_K 4 +#define TS_NPQ 8 + +#define WG_K (BS_K / TS_K) +#define WG_NPQ (BS_NPQ / TS_NPQ) + +#define BS_NPQ_VEC (BS_NPQ / VEC_SIZE) +#define TS_NPQ_VEC (TS_NPQ / VEC_SIZE) + +static inline uint splitWork(uint work_size, uint block_size){ + return (work_size + block_size - 1) / block_size; +} + +REQD_SUBGROUP_SIZE_128 +kernel void kernel_conv_2d( + global void* p_knl, + ulong off_knl, + global void* p_src, + ulong off_src, + global void* p_dst, + ulong off_dst, + local void* shared, + uint Cout, uint Cin, uint N, + uint KW, uint KH, uint W, uint H, uint OW, uint OH, + uint s0, uint s1, uint p0, uint p1, uint d0, uint d1, + uint nb01, uint nb02, uint nb03, + uint nb11, uint nb12, uint nb13, + uint nb1, uint nb2, uint nb3 +) { + global T_FLOAT* knl_data = (global T_FLOAT*) ((global char*)p_knl + off_knl); + global T_FLOAT* src_data = (global T_FLOAT*) ((global char*)p_src + off_src); + global T_FLOAT* dst_data = (global T_FLOAT*) ((global char*)p_dst + off_dst); + + const uint K = Cout; + const uint CRS = Cin*KH*KW; + const uint NPQ = N*OH*OW; + + const uint lid_k = get_local_id(0); + const uint lid_npq = get_local_id(1); + const uint tid = lid_npq * WG_K + lid_k; + + const uint B_idx_K = get_group_id(0); + const uint B_idx_NPQ = get_group_id(1); + + const uint offset_k = B_idx_K * BS_K; + const uint offset_npq = B_idx_NPQ * BS_NPQ; + + local T_FLOAT* Ash = (local T_FLOAT*)shared; + local T_FLOAT4* Bsh = (local T_FLOAT4*) &Ash[BS_K * BS_CRS]; + + T_ACCUM regC[TS_K][TS_NPQ_VEC]; + for (int i = 0; i < TS_K; ++i) { + for (int j = 0; j < TS_NPQ_VEC; ++j) { + regC[i][j] = (T_ACCUM)(0.0f); + } + } + + const uint NB_CRS = splitWork(CRS, BS_CRS); + + for (uint B_idx_CRS = 0; B_idx_CRS < NB_CRS; ++B_idx_CRS) { + const uint offset_crs = B_idx_CRS * BS_CRS; + + for (int i = tid; i < BS_K * BS_CRS; i += (WG_K * WG_NPQ)) { + const uint k_l = i / BS_CRS; + const uint crs_l = i % BS_CRS; + const uint k_g = offset_k + k_l; + const uint crs_g = offset_crs + crs_l; + + if (k_g < K && crs_g < CRS) { + const uint Cin_idx = crs_g / (KW*KH); + const uint KH_idx = (crs_g - Cin_idx*KW*KH) / KW; + const uint KW_idx = crs_g - Cin_idx*KW*KH - KH_idx*KW; + const uint knl_idx = KW_idx + KH_idx*nb01 + Cin_idx*nb02 + k_g*nb03; + Ash[k_l * BS_CRS + crs_l] = knl_data[knl_idx]; + } else { + Ash[k_l * BS_CRS + crs_l] = (T_FLOAT)0.0f; + } + } + + for (int i = tid; i < BS_CRS * BS_NPQ_VEC; i += (WG_K * WG_NPQ)) { + const uint crs_l = i / BS_NPQ_VEC; + const uint npq_l_vec = i % BS_NPQ_VEC; + const uint crs_g = offset_crs + crs_l; + + T_FLOAT4 val = (T_FLOAT4)(0.0f); + if (crs_g < CRS) { + const uint Cin_idx = crs_g / (KW * KH); + const uint KH_idx = (crs_g - Cin_idx * KW * KH) / KW; + const uint KW_idx = crs_g - Cin_idx * KW * KH - KH_idx * KW; + for (int v = 0; v < VEC_SIZE; ++v) { + const uint npq_g = offset_npq + npq_l_vec * VEC_SIZE + v; + if (npq_g < NPQ) { + const uint N_idx = npq_g / (OH * OW); + const uint pq_idx = npq_g % (OH * OW); + const uint OH_idx = pq_idx / OW; + const uint OW_idx = pq_idx % OW; + const int H_idx = (int)(OH_idx * s1 + KH_idx * d1 - p1); + const int W_idx = (int)(OW_idx * s0 + KW_idx * d0 - p0); + + if (H_idx >= 0 && H_idx < H && W_idx >= 0 && W_idx < W) { + const uint src_idx = W_idx + H_idx * nb11 + Cin_idx * nb12 + N_idx * nb13; + ((T_FLOAT*)&val)[v] = src_data[src_idx]; + } + } + } + } + Bsh[crs_l * BS_NPQ_VEC + npq_l_vec] = val; + } + + barrier(CLK_LOCAL_MEM_FENCE); + + #pragma unroll + for (uint crs_l = 0; crs_l < BS_CRS; ++crs_l) { + T_FLOAT regA[TS_K]; + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + regA[k_l_reg] = Ash[(lid_k * TS_K + k_l_reg) * BS_CRS + crs_l]; + } + + for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) { + T_FLOAT4 regB = Bsh[crs_l * BS_NPQ_VEC + lid_npq * TS_NPQ_VEC + npq_l_vec_reg]; + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + regC[k_l_reg][npq_l_vec_reg] = mad(convert_float(regA[k_l_reg]), convert_float4(regB), regC[k_l_reg][npq_l_vec_reg]); + } + } + } + barrier(CLK_LOCAL_MEM_FENCE); + } + + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + const uint k_g = offset_k + lid_k * TS_K + k_l_reg; + if (k_g >= K) continue; + + for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) { + const uint npq_g_base = offset_npq + (lid_npq * TS_NPQ_VEC + npq_l_vec_reg) * VEC_SIZE; + + const uint N_idx = npq_g_base / (OH * OW); + const uint pq_idx = npq_g_base % (OH * OW); + const uint OH_idx = pq_idx / OW; + const uint OW_idx = pq_idx % OW; + + if (nb1 == OW && OW_idx + VEC_SIZE <= OW && npq_g_base + VEC_SIZE <= NPQ) { + const uint dst_idx = OW_idx + OH_idx*nb1 + k_g*nb2 + N_idx*nb3; + VSTORE_T_FLOAT4(regC[k_l_reg][npq_l_vec_reg], 0, &dst_data[dst_idx]); + } else { + T_ACCUM res = regC[k_l_reg][npq_l_vec_reg]; + for (int v = 0; v < VEC_SIZE; ++v) { + const uint npq_g = npq_g_base + v; + if (npq_g < NPQ) { + const uint N_idx_s = npq_g / (OH*OW); + const uint pq_idx_s = npq_g % (OH*OW); + const uint OH_idx_s = pq_idx_s / OW; + const uint OW_idx_s = pq_idx_s % OW; + const uint dst_idx_s = OW_idx_s + OH_idx_s*nb1 + k_g*nb2 + N_idx_s*nb3; + dst_data[dst_idx_s] = (T_FLOAT)(((float*)&res)[v]); + } + } + } + } + } +} diff --git a/ggml/src/ggml-opencl/kernels/conv2d_f16_f32.cl b/ggml/src/ggml-opencl/kernels/conv2d_f16_f32.cl new file mode 100644 index 000000000..cb05637f3 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/conv2d_f16_f32.cl @@ -0,0 +1,176 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +#if defined(cl_qcom_reqd_sub_group_size) +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#else +#define REQD_SUBGROUP_SIZE_128 +#endif + +#define T_ACCUM float4 +#define VEC_SIZE 4 + +#define BS_K 64 +#define BS_NPQ 64 +#define BS_CRS 16 + +#define TS_K 4 +#define TS_NPQ 8 + +#define WG_K (BS_K / TS_K) +#define WG_NPQ (BS_NPQ / TS_NPQ) + +#define BS_NPQ_VEC (BS_NPQ / VEC_SIZE) +#define TS_NPQ_VEC (TS_NPQ / VEC_SIZE) + +static inline uint splitWork(uint work_size, uint block_size){ + return (work_size + block_size - 1) / block_size; +} + +REQD_SUBGROUP_SIZE_128 +kernel void kernel_conv_2d( + global void* p_knl, + ulong off_knl, + global void* p_src, + ulong off_src, + global void* p_dst, + ulong off_dst, + local void* shared, + uint Cout, uint Cin, uint N, + uint KW, uint KH, uint W, uint H, uint OW, uint OH, + uint s0, uint s1, uint p0, uint p1, uint d0, uint d1, + uint nb01, uint nb02, uint nb03, + uint nb11, uint nb12, uint nb13, + uint nb1, uint nb2, uint nb3 +) { + global half* knl_data = (global half*) ((global char*)p_knl + off_knl); + global float* src_data = (global float*) ((global char*)p_src + off_src); + global float* dst_data = (global float*) ((global char*)p_dst + off_dst); + + const uint K = Cout; + const uint CRS = Cin*KH*KW; + const uint NPQ = N*OH*OW; + + const uint lid_k = get_local_id(0); + const uint lid_npq = get_local_id(1); + const uint tid = lid_npq * WG_K + lid_k; + + const uint B_idx_K = get_group_id(0); + const uint B_idx_NPQ = get_group_id(1); + + const uint offset_k = B_idx_K * BS_K; + const uint offset_npq = B_idx_NPQ * BS_NPQ; + + local half* Ash = (local half*)shared; + local float4* Bsh = (local float4*) &Ash[BS_K * BS_CRS]; + + T_ACCUM regC[TS_K][TS_NPQ_VEC]; + for (int i = 0; i < TS_K; ++i) { + for (int j = 0; j < TS_NPQ_VEC; ++j) { + regC[i][j] = (T_ACCUM)(0.0f); + } + } + + const uint NB_CRS = splitWork(CRS, BS_CRS); + + for (uint B_idx_CRS = 0; B_idx_CRS < NB_CRS; ++B_idx_CRS) { + const uint offset_crs = B_idx_CRS * BS_CRS; + + for (int i = tid; i < BS_K * BS_CRS; i += (WG_K * WG_NPQ)) { + const uint k_l = i / BS_CRS; + const uint crs_l = i % BS_CRS; + const uint k_g = offset_k + k_l; + const uint crs_g = offset_crs + crs_l; + + if (k_g < K && crs_g < CRS) { + const uint Cin_idx = crs_g / (KW*KH); + const uint KH_idx = (crs_g - Cin_idx*KW*KH) / KW; + const uint KW_idx = crs_g - Cin_idx*KW*KH - KH_idx*KW; + const uint knl_idx = KW_idx + KH_idx*nb01 + Cin_idx*nb02 + k_g*nb03; + Ash[k_l * BS_CRS + crs_l] = knl_data[knl_idx]; + } else { + Ash[k_l * BS_CRS + crs_l] = (half)0.0f; + } + } + + for (int i = tid; i < BS_CRS * BS_NPQ_VEC; i += (WG_K * WG_NPQ)) { + const uint crs_l = i / BS_NPQ_VEC; + const uint npq_l_vec = i % BS_NPQ_VEC; + const uint crs_g = offset_crs + crs_l; + + float4 val = (float4)(0.0f); + if (crs_g < CRS) { + const uint Cin_idx = crs_g / (KW * KH); + const uint KH_idx = (crs_g - Cin_idx * KW * KH) / KW; + const uint KW_idx = crs_g - Cin_idx * KW * KH - KH_idx * KW; + for (int v = 0; v < VEC_SIZE; ++v) { + const uint npq_g = offset_npq + npq_l_vec * VEC_SIZE + v; + if (npq_g < NPQ) { + const uint N_idx = npq_g / (OH * OW); + const uint pq_idx = npq_g % (OH * OW); + const uint OH_idx = pq_idx / OW; + const uint OW_idx = pq_idx % OW; + const int H_idx = (int)(OH_idx * s1 + KH_idx * d1 - p1); + const int W_idx = (int)(OW_idx * s0 + KW_idx * d0 - p0); + + if (H_idx >= 0 && H_idx < H && W_idx >= 0 && W_idx < W) { + const uint src_idx = W_idx + H_idx * nb11 + Cin_idx * nb12 + N_idx * nb13; + ((float*)&val)[v] = src_data[src_idx]; + } + } + } + } + Bsh[crs_l * BS_NPQ_VEC + npq_l_vec] = val; + } + + barrier(CLK_LOCAL_MEM_FENCE); + + #pragma unroll + for (uint crs_l = 0; crs_l < BS_CRS; ++crs_l) { + half regA[TS_K]; + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + regA[k_l_reg] = Ash[(lid_k * TS_K + k_l_reg) * BS_CRS + crs_l]; + } + + for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) { + float4 regB = Bsh[crs_l * BS_NPQ_VEC + lid_npq * TS_NPQ_VEC + npq_l_vec_reg]; + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + regC[k_l_reg][npq_l_vec_reg] = mad(convert_float(regA[k_l_reg]), regB, regC[k_l_reg][npq_l_vec_reg]); + } + } + } + barrier(CLK_LOCAL_MEM_FENCE); + } + + for (uint k_l_reg = 0; k_l_reg < TS_K; ++k_l_reg) { + const uint k_g = offset_k + lid_k * TS_K + k_l_reg; + if (k_g >= K) continue; + + for (uint npq_l_vec_reg = 0; npq_l_vec_reg < TS_NPQ_VEC; ++npq_l_vec_reg) { + const uint npq_g_base = offset_npq + (lid_npq * TS_NPQ_VEC + npq_l_vec_reg) * VEC_SIZE; + + const uint N_idx = npq_g_base / (OH * OW); + const uint pq_idx = npq_g_base % (OH * OW); + const uint OH_idx = pq_idx / OW; + const uint OW_idx = pq_idx % OW; + + if (nb1 == OW && OW_idx + VEC_SIZE <= OW && npq_g_base + VEC_SIZE <= NPQ) { + const uint dst_idx = OW_idx + OH_idx*nb1 + k_g*nb2 + N_idx*nb3; + vstore4(regC[k_l_reg][npq_l_vec_reg], 0, &dst_data[dst_idx]); + } else { + T_ACCUM res = regC[k_l_reg][npq_l_vec_reg]; + for (int v = 0; v < VEC_SIZE; ++v) { + const uint npq_g = npq_g_base + v; + if (npq_g < NPQ) { + const uint N_idx_s = npq_g / (OH*OW); + const uint pq_idx_s = npq_g % (OH*OW); + const uint OH_idx_s = pq_idx_s / OW; + const uint OW_idx_s = pq_idx_s % OW; + const uint dst_idx_s = OW_idx_s + OH_idx_s*nb1 + k_g*nb2 + N_idx_s*nb3; + dst_data[dst_idx_s] = ((float*)&res)[v]; + } + } + } + } + } +} diff --git a/ggml/src/ggml-opencl/kernels/im2col_f16.cl b/ggml/src/ggml-opencl/kernels/im2col_f16.cl index b84c89846..cf6cdaa4c 100644 --- a/ggml/src/ggml-opencl/kernels/im2col_f16.cl +++ b/ggml/src/ggml-opencl/kernels/im2col_f16.cl @@ -31,7 +31,7 @@ kernel void kernel_im2col_f16( src1 = (global float*)((global char*)src1 + offset1); dst = (global half*)((global char*)dst + offsetd); - long ksize = OW * (KH > 1 ? KW : 1); + long ksize = OW * KH; long kx = i / ksize; long kd = kx * ksize; long ky = (i - kd) / OW; diff --git a/ggml/src/ggml-opencl/kernels/im2col_f32.cl b/ggml/src/ggml-opencl/kernels/im2col_f32.cl index 4bf65e4ea..1ecdb2344 100644 --- a/ggml/src/ggml-opencl/kernels/im2col_f32.cl +++ b/ggml/src/ggml-opencl/kernels/im2col_f32.cl @@ -31,7 +31,7 @@ kernel void kernel_im2col_f32( src1 = (global float*)((global char*)src1 + offset1); dst = (global float*)((global char*)dst + offsetd); - long ksize = OW * (KH > 1 ? KW : 1); + long ksize = OW * KH; long kx = i / ksize; long kd = kx * ksize; long ky = (i - kd) / OW; diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index a6f9af0c8..872eb4b05 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -3530,8 +3530,11 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, SYCL_CHECK(CHECK_TRY_ERROR( stream->memset(dev_cur_src1_row.get(), 0, sizeof(int)))); + const unsigned int max_work_group_size = ggml_sycl_info().max_work_group_sizes[ctx.device]; + assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0); + { - sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u)); + sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, max_work_group_size)); sycl::range<3> grid_dims(1, n_ids, ids->ne[1]); sycl_launch(stream, [&](sycl::handler & cgh) { sycl::local_accessor src1_row_acc(cgh); @@ -3575,7 +3578,7 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row); { - sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u)); + sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, max_work_group_size)); sycl::range<3> grid_dims(1, 1, num_src1_rows); sycl_launch(stream, [&](sycl::handler & cgh) { const char *__restrict dst_contiguous_get = diff --git a/ggml/src/ggml-sycl/im2col.cpp b/ggml/src/ggml-sycl/im2col.cpp index 52737cc74..7adcb3d9d 100644 --- a/ggml/src/ggml-sycl/im2col.cpp +++ b/ggml/src/ggml-sycl/im2col.cpp @@ -26,7 +26,7 @@ static void im2col_kernel(const float * x, T * dst, int64_t batch_offset, int64_ // make each work-item deal with more elements since sycl global range can not exceed max int for (int64_t i = global_id; i < pelements; i += (work_group_size * item_ct1.get_group_range(2))) { - const int64_t ksize = OW * (KH > 1 ? KW : 1); + const int64_t ksize = OW * KH; const int64_t kx = i / ksize; const int64_t kd = kx * ksize; const int64_t ky = (i - kd) / OW; diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 3019a545d..1a7a381ce 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -328,6 +328,7 @@ struct vk_device_struct { uint64_t max_memory_allocation_size; uint64_t suballocation_block_size; bool fp16; + bool bf16; bool pipeline_robustness; vk::Device device; uint32_t vendor_id; @@ -482,6 +483,7 @@ struct vk_device_struct { vk_pipeline pipeline_rwkv_wkv6_f32; vk_pipeline pipeline_rwkv_wkv7_f32; vk_pipeline pipeline_opt_step_adamw_f32; + vk_pipeline pipeline_conv2d_f32; vk_pipeline pipeline_conv2d_dw_whcn_f32; vk_pipeline pipeline_conv2d_dw_cwhn_f32; @@ -875,6 +877,38 @@ struct vk_op_rwkv_wkv7_push_constants { uint32_t H; }; +struct vk_op_conv2d_push_constants { + uint32_t Cout; + uint32_t Cin; + uint32_t N; + + uint32_t KW; + uint32_t KH; + uint32_t W; + uint32_t H; + uint32_t OW; + uint32_t OH; + + uint32_t s0; + uint32_t s1; + uint32_t p0; + uint32_t p1; + uint32_t d0; + uint32_t d1; + + uint32_t nb01; + uint32_t nb02; + uint32_t nb03; + + uint32_t nb11; + uint32_t nb12; + uint32_t nb13; + + uint32_t nb1; + uint32_t nb2; + uint32_t nb3; +}; + struct vk_op_conv2d_dw_push_constants { uint32_t ne; uint32_t batches; @@ -974,18 +1008,45 @@ class vk_memory_logger { #endif // GGML_VULKAN_MEMORY_DEBUG class vk_perf_logger { -public: + public: void print_timings() { + if (timings.empty()) { + return; + } + uint64_t total_all_op_times = 0; std::cerr << "----------------\nVulkan Timings:" << std::endl; - for (const auto& t : timings) { - uint64_t total = 0; - for (const auto& time : t.second) { - total += time; + for (const auto & t : timings) { + uint64_t total_op_times = 0; + for (const auto & time : t.second) { + total_op_times += time; } - std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us" << std::endl; + std::cerr << t.first << ": " << t.second.size() << " x " << (total_op_times / t.second.size() / 1000.0) + << " us"; + + // If we have as many flops entries as timing entries for the op, then compute and log the flops/S. + auto it = flops.find(t.first); + if (it != flops.end() && (it->second).size() == t.second.size()) { + uint64_t total_op_flops = 0; + for (const auto & elem : it->second) { + total_op_flops += elem; + } + std::cerr << " (" + << (double(total_op_flops) / (1000.0 * 1000.0 * 1000.0)) / + (double(total_op_times) / (1000.0 * 1000.0 * 1000.0)) + << " GFLOPS/s)"; + } + + total_all_op_times += total_op_times; + + std::cerr << std::endl; + } + + if (timings.size() > 0) { + std::cerr << "Total time: " << total_all_op_times / 1000.0 << " us." << std::endl; } timings.clear(); + flops.clear(); } void log_timing(const ggml_tensor * node, uint64_t time) { @@ -994,22 +1055,45 @@ class vk_perf_logger { return; } if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) { - const uint64_t m = node->src[0]->ne[1]; - const uint64_t n = node->src[1]->ne[1]; - const uint64_t k = node->src[1]->ne[0]; - std::string name = ggml_op_name(node->op); + const uint64_t m = node->src[0]->ne[1]; + const uint64_t n = node->src[1]->ne[1]; + const uint64_t k = node->src[1]->ne[0]; + std::string name = ggml_op_name(node->op); if (n == 1) { name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k); } else { name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k); } timings[name].push_back(time); + flops[name].push_back(m * n * (k + (k - 1))); + return; + } + if (node->op == GGML_OP_CONV_2D) { + std::string name = ggml_op_name(node->op); + ggml_tensor * knl = node->src[0]; + uint64_t OW = node->ne[0]; + uint64_t OH = node->ne[1]; + uint64_t N = node->ne[3]; + uint64_t Cout = node->ne[2]; + uint64_t KW = knl->ne[0]; + uint64_t KH = knl->ne[1]; + uint64_t Cin = knl->ne[2]; + // KxCRS @ CRSxNPQ = KxNPQ -> M=K, K=CRS, N=NPQ + uint64_t size_M = Cout; + uint64_t size_K = Cin * KW * KH; + uint64_t size_N = N * OW * OH; + uint64_t n_flops = size_M * size_N * (size_K + (size_K - 1)); + name += " M=Cout=" + std::to_string(size_M) + ", K=Cin*KW*KH=" + std::to_string(size_K) + + ", N=N*OW*OH=" + std::to_string(size_N); + flops[name].push_back(n_flops); + timings[name].push_back(time); return; } timings[ggml_op_name(node->op)].push_back(time); } -private: + private: std::map> timings; + std::map> flops; }; struct ggml_backend_vk_context { @@ -2112,6 +2196,7 @@ static void ggml_vk_load_shaders(vk_device& device) { } compile_count++; } + compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), spv_size, spv_data, entrypoint, parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size)); }; @@ -2961,6 +3046,42 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); + // conv2d + uint32_t conv2d_WG_SIZE = 256; + uint32_t conv2d_BS_K = 128; + uint32_t conv2d_BS_CRS = 16; + uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices. + if (device->subgroup_shuffle && + device->vendor_id != VK_VENDOR_ID_INTEL) { // Do not enable collectives on Intel, see PR 14316 + use_collectives = 1; + conv2d_BS_CRS = std::min( + device->subgroup_size, + conv2d_BS_CRS); // CRS block size should be capped at sugroup size for correctness when shuffle is used. + } + uint32_t conv2d_BS_NPQ = 128; + uint32_t conv2d_TS_K = 8; + uint32_t conv2d_shmem_req = + (conv2d_BS_K * (conv2d_BS_CRS + 1) + conv2d_BS_CRS * (conv2d_BS_NPQ + 1)) * sizeof(float); + if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) { + conv2d_BS_CRS = 8; + if (use_collectives) { + conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS); + } + } + + if (use_collectives) { + ggml_vk_create_pipeline( + device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3, + sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 }, + { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true); + } else { + ggml_vk_create_pipeline( + device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3, + sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 }, + { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, + false); + } + ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1); @@ -3273,6 +3394,12 @@ static vk_device ggml_vk_get_device(size_t idx) { device->fp16 = device->fp16 && vk12_features.shaderFloat16; +#if defined(VK_KHR_shader_bfloat16) + device->bf16 = bfloat16_support && bfloat16_features.shaderBFloat16Type; +#else + device->bf16 = false; +#endif + device->pipeline_robustness = pl_robustness_features.pipelineRobustness; if (device->subgroup_size_control) { @@ -3615,6 +3742,7 @@ static void ggml_vk_print_gpu_info(size_t idx) { bool coopmat_support = false; bool coopmat2_support = false; bool integer_dot_product = false; + bool bfloat16_support = false; for (auto properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { @@ -3635,6 +3763,11 @@ static void ggml_vk_print_gpu_info(size_t idx) { } else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) { integer_dot_product = true; +#endif +#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT) + } else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 && + !getenv("GGML_VK_DISABLE_BFLOAT16")) { + bfloat16_support = true; #endif } } @@ -3701,10 +3834,25 @@ static void ggml_vk_print_gpu_info(size_t idx) { last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features; } +#if defined(VK_KHR_shader_bfloat16) + VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {}; + bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR; + if (bfloat16_support) { + last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features; + last_struct = (VkBaseOutStructure *)&bfloat16_features; + } +#endif + vkGetPhysicalDeviceFeatures2(physical_device, &device_features2); fp16 = fp16 && vk12_features.shaderFloat16; +#if defined(VK_KHR_shader_bfloat16) + bool bf16 = bfloat16_support && bfloat16_features.shaderBFloat16Type; +#else + bool bf16 = false; +#endif + uint32_t default_subgroup_size = get_subgroup_size("", device_architecture); const size_t subgroup_size = (default_subgroup_size != 0) ? default_subgroup_size : subgroup_props.subgroupSize; const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu; @@ -3722,8 +3870,8 @@ static void ggml_vk_print_gpu_info(size_t idx) { std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none"; std::string device_name = props2.properties.deviceName.data(); - GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | shared memory: %d | int dot: %d | matrix cores: %s\n", - idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, subgroup_size, + GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | bf16: %d | warp size: %zu | shared memory: %d | int dot: %d | matrix cores: %s\n", + idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, bf16, subgroup_size, props2.properties.limits.maxComputeSharedMemorySize, integer_dot_product, matrix_cores.c_str()); if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) { @@ -6809,6 +6957,12 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_leaky_relu_f32; } return nullptr; + case GGML_OP_CONV_2D: + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && + ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { + return ctx->device->pipeline_conv2d_f32; + } + return nullptr; case GGML_OP_CONV_2D_DW: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { if (ggml_is_contiguous(src1)) { @@ -7131,6 +7285,31 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co const uint32_t OW = dst->ne[0]; elements = { N * OC * OH * OW, 1, 1}; } break; + case GGML_OP_CONV_2D: + { + // src0 - kernel: [KW, KH, Cin, Cout] + // src1 - input: [W, H, Cin, N] + // dst - result: [OW, OH, Cout, N] + + // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) + auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; + }; + // parallelize in {OW/BS_K, OH/BS_NPQ, 1} + int64_t W = src1->ne[0]; + int64_t H = src1->ne[1]; + int64_t KW = src0->ne[0]; + int64_t KH = src0->ne[1]; + int64_t Cout = src0->ne[3]; + int64_t N = src1->ne[3]; + int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]); + int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]); + int64_t NPQ = N * OW * OH; + + // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups + elements = { static_cast(Cout), static_cast(NPQ), 1 }; + } + break; case GGML_OP_ADD: case GGML_OP_SUB: case GGML_OP_DIV: @@ -7997,6 +8176,55 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c }, dryrun); } +static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0, + const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + GGML_ASSERT(nb0 == sizeof(float)); + + vk_op_conv2d_push_constants p{}; + p.Cout = static_cast(ne03); + p.Cin = static_cast(ne02); + p.N = static_cast(ne13); + + p.KW = static_cast(ne00); + p.KH = static_cast(ne01); + p.W = static_cast(ne10); + p.H = static_cast(ne11); + p.OW = static_cast(ne0); + p.OH = static_cast(ne1); + + p.s0 = static_cast(dst->op_params[0]); + p.s1 = static_cast(dst->op_params[1]); + p.p0 = static_cast(dst->op_params[2]); + p.p1 = static_cast(dst->op_params[3]); + p.d0 = static_cast(dst->op_params[4]); + p.d1 = static_cast(dst->op_params[5]); + + p.nb01 = static_cast(nb01 / nb00); + p.nb02 = static_cast(nb02 / nb00); + p.nb03 = static_cast(nb03 / nb00); + + p.nb11 = static_cast(nb11 / nb10); + p.nb12 = static_cast(nb12 / nb10); + p.nb13 = static_cast(nb13 / nb10); + + p.nb1 = static_cast(nb1 / nb0); + p.nb2 = static_cast(nb2 / nb0); + p.nb3 = static_cast(nb3 / nb0); + + GGML_ASSERT(ne03 == ne2); + GGML_ASSERT(ne02 == ne12); + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun); +} + static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { vk_op_conv2d_dw_push_constants p{}; p.ne = ggml_nelements(dst); @@ -9059,6 +9287,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: + case GGML_OP_CONV_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: @@ -9126,6 +9355,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: + case GGML_OP_CONV_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_LEAKY_RELU: { @@ -9332,6 +9562,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr case GGML_OP_POOL_2D: ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun); + break; + case GGML_OP_CONV_2D: + ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node, dryrun); + break; case GGML_OP_CONV_2D_DW: ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun); @@ -9462,6 +9696,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: + case GGML_OP_CONV_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: @@ -10013,7 +10248,7 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st } // if rms_norm is the B operand, then we don't handle broadcast if (rms_norm == mul->src[1] && - mul->src[0]->ne[1] != rms_norm->ne[1]) { + !ggml_are_same_shape(mul->src[0], rms_norm)) { return false; } // rms_norm shader assumes contiguous rows @@ -10043,6 +10278,12 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false); if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) { total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]); + } else if (cgraph->nodes[i]->op == GGML_OP_CONV_2D) { + // Return CRSxNPQxsizeof(*) to account as many bytes as mul_mat has in im2col->mul_mat mode. + auto CRS_size = + cgraph->nodes[i]->src[0]->ne[0] * cgraph->nodes[i]->src[0]->ne[1] * cgraph->nodes[i]->src[0]->ne[2]; + auto NPQ_size = cgraph->nodes[i]->ne[0] * cgraph->nodes[i]->ne[1] * cgraph->nodes[i]->ne[3]; + total_mat_mul_bytes += NPQ_size * CRS_size * ggml_type_size(cgraph->nodes[i]->type); } i += ctx->num_additional_fused_ops; ctx->num_additional_fused_ops = 0; @@ -10619,6 +10860,20 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm return true; case GGML_OP_CONV_TRANSPOSE_1D: return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; + case GGML_OP_CONV_2D: + { + // Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK + ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context; + const vk_device& device = ggml_vk_get_device(ctx->device); + bool is_Apple = ggml_vk_get_device(ctx->device)->vendor_id == VK_VENDOR_ID_APPLE; + // Channel-contiguous format is not supported yet. + return (op->src[0]->type == GGML_TYPE_F32 && + op->src[1]->type == GGML_TYPE_F32 && + op->type == GGML_TYPE_F32 && + ggml_is_contiguous(op->src[0]) && + ggml_is_contiguous(op->src[1]) && + ggml_is_contiguous(op)) && !is_Apple; + } default: return false; } @@ -11177,6 +11432,14 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * const int32_t p1 = tensor->op_params[6]; tensor_clone = ggml_pool_2d(ggml_ctx, src_clone[0], op, k0, k1, s0, s1, p0, p1); + } else if (tensor->op == GGML_OP_CONV_2D) { + const int32_t s0 = tensor->op_params[0]; + const int32_t s1 = tensor->op_params[1]; + const int32_t p0 = tensor->op_params[2]; + const int32_t p1 = tensor->op_params[3]; + const int32_t d0 = tensor->op_params[4]; + const int32_t d1 = tensor->op_params[5]; + tensor_clone = ggml_conv_2d(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1); } else if (tensor->op == GGML_OP_LEAKY_RELU) { const float * op_params = (const float *)tensor->op_params; tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/conv2d_mm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/conv2d_mm.comp new file mode 100644 index 000000000..481940a52 --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/conv2d_mm.comp @@ -0,0 +1,265 @@ +#version 450 + +#ifdef USE_COLLECTIVES +# extension GL_KHR_shader_subgroup_shuffle : enable +#endif + +#include "types.comp" + +// Make spec constant +#define SHMEM_PAD 0 + +// shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j +layout(binding = 0) readonly buffer A { + A_TYPE knl_data[]; +}; // src0 - kernel: [KW, KH, Cin, Cout] + +layout(binding = 1) readonly buffer B { + B_TYPE src_data[]; +}; // src1 - input: [W, H, Cin, N] -- channel_first format + +layout(binding = 2) writeonly buffer D { + D_TYPE dst_data[]; +}; // dst - result: [OW, OH, Cout, N] + +layout(push_constant) uniform parameter { + // I/O channels, batch size + uint32_t Cout; + uint32_t Cin; + uint32_t N; + + // Tensor spatial sizes: kernel, input, output + uint32_t KW; + uint32_t KH; + uint32_t W; + uint32_t H; + uint32_t OW; + uint32_t OH; + + // Parameters: stride, padding, dilation - 0=y, 1=x + uint32_t s0; + uint32_t s1; + uint32_t p0; + uint32_t p1; + uint32_t d0; + uint32_t d1; + + // Strides in elements + uint32_t nb01; + uint32_t nb02; + uint32_t nb03; + + uint32_t nb11; + uint32_t nb12; + uint32_t nb13; + + uint32_t nb1; + uint32_t nb2; + uint32_t nb3; +} + +p; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; +// Blocktile sizes +layout(constant_id = 1) const uint BS_K = 128; +layout(constant_id = 2) const uint BS_CRS = 16; +layout(constant_id = 3) const uint BS_NPQ = 128; +// Thread-tile sizes +layout(constant_id = 4) const uint TS_K = 8; +layout(constant_id = 5) const uint use_collectives = 1; + +uint32_t tid = gl_LocalInvocationID.x; +const uint32_t WG_SIZE = gl_WorkGroupSize.x; + +uint splitWork(uint work_size, uint block_size) { + return (block_size + work_size - 1) / block_size; +} + +uint32_t K = p.Cout; +uint32_t CRS = p.Cin * p.KH * p.KW; +uint32_t NPQ = p.N * p.OH * p.OW; + +uint32_t n_elems_out = K * NPQ; + +// Number of blocktiles per input +uint32_t NB_CRS = splitWork(CRS, BS_CRS); + +const uint32_t Ash_stride = BS_CRS + SHMEM_PAD; +const uint32_t Bsh_stride = BS_NPQ + SHMEM_PAD; + +const uint32_t Ash_numel = BS_K * BS_CRS; +const uint32_t Bsh_numel = BS_CRS * BS_NPQ; + +const uint32_t Ash_len = BS_K * Ash_stride; +const uint32_t Bsh_len = BS_CRS * Bsh_stride; + +shared float Ash[Ash_len]; // K x CRS +shared float Bsh[Bsh_len]; // CRS x NPQ + +// Threadtile sizes +const uint32_t TS_NPQ = BS_K * BS_NPQ / WG_SIZE / TS_K; + +// Number of threadtiles per blocktile +const uint32_t NT_K = BS_K / TS_K; +const uint32_t NT_NPQ = BS_NPQ / TS_NPQ; + +float regA[TS_K]; +float regB[TS_NPQ]; +float regC[TS_K][TS_NPQ]; + +/* +Compute +KxCRS @ CRSxNPQ = K x NPQ +K=Cout +C=Cin +R,S=KH,KW +P,Q=OH,OW +*/ + +uint32_t B_idx_K = gl_WorkGroupID.x; +uint32_t B_idx_NPQ = gl_WorkGroupID.y; + +uint32_t T_y = tid / NT_NPQ; +uint32_t T_x = tid % NT_NPQ; + +uint32_t Ar = tid / BS_CRS; +uint32_t Ac = tid % BS_CRS; +const uint32_t ArpWg = WG_SIZE / BS_CRS; + +uint32_t Br = tid / BS_NPQ; +uint32_t Bc = tid % BS_NPQ; +const uint32_t BrpWg = WG_SIZE / BS_NPQ; + +void main() { + for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { + for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { + regC[T_ly][T_lx] = 0.0; + } + } + /* Advance block in CRS dim */ + for (uint32_t B_idx_CRS = 0; B_idx_CRS < NB_CRS; B_idx_CRS++) { + uint32_t CRS_idx_a; + uint32_t Cin_idx_a; + uint32_t KH_idx_a; + uint32_t KW_idx_a; + +#ifdef USE_COLLECTIVES + uint32_t cached_CRS_idx; + uint32_t cached_Cin_idx; + uint32_t cached_KH_idx; + uint32_t cached_KW_idx; + if (use_collectives == 1) { + cached_CRS_idx = B_idx_CRS * BS_CRS + gl_SubgroupInvocationID; + cached_Cin_idx = cached_CRS_idx / (p.KW * p.KH); + uint32_t cached_CRS_remainder = (cached_CRS_idx - cached_Cin_idx * p.KW * p.KH); + cached_KH_idx = cached_CRS_remainder / p.KW; + cached_KW_idx = cached_CRS_remainder - cached_KH_idx * p.KW; + + CRS_idx_a = subgroupShuffle(cached_CRS_idx, Ac); + Cin_idx_a = subgroupShuffle(cached_Cin_idx, Ac); + KH_idx_a = subgroupShuffle(cached_KH_idx, Ac); + KW_idx_a = subgroupShuffle(cached_KW_idx, Ac); + } else { + CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A) + Cin_idx_a = CRS_idx_a / (p.KW * p.KH); + uint32_t CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH; + KH_idx_a = CRS_remainder / p.KW; + KW_idx_a = CRS_remainder - KH_idx_a * p.KW; + } +#else + CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A) + Cin_idx_a = CRS_idx_a / (p.KW * p.KH); + CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH; + KH_idx_a = CRS_remainder / p.KW; + KW_idx_a = CRS_remainder - KH_idx_a * p.KW; +#endif + + /* Load kernel to A_block: (BS_K x BS_CRS)*/ + for (uint32_t r_offset = 0; r_offset < BS_K; r_offset += ArpWg) { + uint32_t B_ly = r_offset + Ar; + uint32_t B_lx = Ac; + uint32_t K_idx = B_idx_K * BS_K + B_ly; /* Global K_idx (row index of A)*/ + uint32_t knl_idx = min(KW_idx_a + KH_idx_a * p.nb01 + Cin_idx_a * p.nb02 + K_idx * p.nb03, K * CRS - 1); + float val = knl_data[knl_idx]; + if (K_idx >= K || CRS_idx_a >= CRS) { + val = 0.0; + } + Ash[B_ly * Ash_stride + B_lx] = val; + } + /* Load input to B_block: (BS_CRS x BS_NPQ) */ + for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) { + uint32_t B_ly = r_offset + Br; /* Row index of B block */ + uint32_t B_lx = Bc; + uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + B_lx; /* Global NPQ index (column index of B) */ + uint32_t N_idx = NPQ_idx / (p.OH * p.OW); + uint32_t NPQ_remainder = NPQ_idx - N_idx * p.OH * p.OW; + uint32_t OH_idx = NPQ_remainder / p.OW; + uint32_t OW_idx = NPQ_remainder - OH_idx * p.OW; + + uint32_t CRS_idx_b; + uint32_t Cin_idx_b; + uint32_t KH_idx_b; + uint32_t KW_idx_b; +#ifdef USE_COLLECTIVES + if (use_collectives == 1) { + CRS_idx_b = subgroupShuffle(cached_CRS_idx, r_offset + Br); + Cin_idx_b = subgroupShuffle(cached_Cin_idx, r_offset + Br); + KH_idx_b = subgroupShuffle(cached_KH_idx, r_offset + Br); + KW_idx_b = subgroupShuffle(cached_KW_idx, r_offset + Br); + } else { + CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */ + Cin_idx_b = CRS_idx_b / (p.KW * p.KH); + uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH; + KH_idx_b = CRS_remainder / p.KW; + KW_idx_b = CRS_remainder - KH_idx_b * p.KW; + } +#else + CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */ + Cin_idx_b = CRS_idx_b / (p.KW * p.KH); + uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH; + KH_idx_b = CRS_remainder / p.KW; + KW_idx_b = CRS_remainder - KH_idx_b * p.KW; +#endif + + uint32_t H_idx = OH_idx * p.s1 + KH_idx_b * p.d1 - p.p1; + uint32_t W_idx = OW_idx * p.s0 + KW_idx_b * p.d0 - p.p0; + uint32_t src_idx = + min(max(W_idx + H_idx * p.nb11 + Cin_idx_b * p.nb12 + N_idx * p.nb13, 0), p.Cin * p.N * p.W * p.H - 1); + float val = src_data[src_idx]; + if (CRS_idx_b >= CRS || NPQ_idx >= NPQ || H_idx < 0 || H_idx >= p.H || W_idx < 0 || W_idx >= p.W) { + val = 0.0; + } + Bsh[B_ly * Bsh_stride + B_lx] = val; + } + barrier(); + for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) { + for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { + regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx]; + } + for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { + regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx]; + } + for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { + for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { + regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]); + } + } + } + barrier(); + } + /* Save C* */ + for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) { + for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) { + uint32_t K_idx = B_idx_K * BS_K + T_y * TS_K + T_ly; + uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx; + uint32_t N_idx = NPQ_idx / (p.OH * p.OW); + uint32_t OH_idx = (NPQ_idx - N_idx * p.OH * p.OW) / p.OW; + uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW; + uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3; + if (K_idx < K && NPQ_idx < NPQ) { + dst_data[dst_idx] = regC[T_ly][T_lx]; + } + } + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp b/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp index 17c7ccb90..fdbcf7eba 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp @@ -40,12 +40,10 @@ void main() { const uint src_base = ic * p.offset_delta + batch * p.batch_offset; const uint dst_base = ((batch * p.OH + oh) * p.OW) * p.CHW + ic * (p.KW * p.KH); const int oh_s1 = int(oh) * p.s1; - const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1); + const uint ksize = p.OW * p.KH; const uint base_linear_idx = gidx * NUM_ITER; - const uint max_ky = ksize / p.OW; - uint current_kx = base_linear_idx / ksize; const uint rem = base_linear_idx - (current_kx * ksize); uint current_ky = rem / p.OW; @@ -76,7 +74,7 @@ void main() { if (++current_ix == p.OW) { current_ix = 0; - if (++current_ky == max_ky) { + if (++current_ky == p.KH) { current_ky = 0; current_kx++; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp index 6428ca7ba..bdd7db2d6 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp @@ -50,8 +50,14 @@ void main() { const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1)); if (do_multiply) { - [[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) { - data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col])); + if (ncols > p.ne10) { + [[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) { + data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + fastmod(col, p.ne10)])); + } + } else { + [[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) { + data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col])); + } } } else { [[unroll]] for (uint col = tid; col < ncols; col += BLOCK_SIZE) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 809c0bd9b..598f0370f 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -655,6 +655,8 @@ void process_shaders() { string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}})); + string_to_spv("conv2d_f32", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}}); + string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}})); string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}})); @@ -765,8 +767,8 @@ void write_output_files() { len += "};\n"; } } - fprintf(src, data.c_str()); - fprintf(src, len.c_str()); + fputs(data.c_str(), src); + fputs(len.c_str(), src); } fclose(hdr); fclose(src); diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index d8afe7696..680210db7 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -233,6 +233,11 @@ class Adapter: TYPE = "adapter.type" LORA_ALPHA = "adapter.lora.alpha" + class IMatrix: + CHUNK_COUNT = "imatrix.chunk_count" + CHUNK_SIZE = "imatrix.chunk_size" + DATASETS = "imatrix.datasets" + class Clip: PROJECTOR_TYPE = "clip.projector_type" HAS_VISION_ENCODER = "clip.has_vision_encoder" @@ -282,6 +287,7 @@ class Projector: class GGUFType: MODEL = "model" ADAPTER = "adapter" + IMATRIX = "imatrix" MMPROJ = "mmproj" # dummy, unused for now @@ -354,6 +360,7 @@ class MODEL_ARCH(IntEnum): JAIS = auto() NEMOTRON = auto() EXAONE = auto() + EXAONE4 = auto() GRANITE = auto() GRANITE_MOE = auto() GRANITE_HYBRID = auto() @@ -364,6 +371,7 @@ class MODEL_ARCH(IntEnum): DOTS1 = auto() ARCEE = auto() ERNIE4_5 = auto() + ERNIE4_5_MOE = auto() HUNYUAN_MOE = auto() SMOLLM3 = auto() LFM2 = auto() @@ -670,6 +678,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.JAIS: "jais", MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.EXAONE: "exaone", + MODEL_ARCH.EXAONE4: "exaone4", MODEL_ARCH.GRANITE: "granite", MODEL_ARCH.GRANITE_MOE: "granitemoe", MODEL_ARCH.GRANITE_HYBRID: "granitehybrid", @@ -680,6 +689,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.DOTS1: "dots1", MODEL_ARCH.ARCEE: "arcee", MODEL_ARCH.ERNIE4_5: "ernie4_5", + MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe", MODEL_ARCH.FALCON_H1: "falcon-h1", MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe", MODEL_ARCH.SMOLLM3: "smollm3", @@ -2022,6 +2032,28 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_UP_SHEXP, MODEL_TENSOR.FFN_EXP_PROBS_B, ], + MODEL_ARCH.ERNIE4_5_MOE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + MODEL_TENSOR.FFN_EXP_PROBS_B, + ], MODEL_ARCH.PLM: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT, @@ -2173,6 +2205,23 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.EXAONE4: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.GRANITE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py index e807f4346..67efedbdb 100644 --- a/gguf-py/gguf/metadata.py +++ b/gguf-py/gguf/metadata.py @@ -144,6 +144,10 @@ def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]: # Quick hack to fix the Norway problem # https://hitchdev.com/strictyaml/why/implicit-typing-removed/ yaml_content = yaml_content.replace("- no\n", "- \"no\"\n") + # yaml should use 2 spaces insted of tab + # this issue has came up with the Qwen/Qwen3-235B-A22B-Instruct-2507 model card + # (I've also sent a pr tp fix the modelcard too) + yaml_content = yaml_content.replace("\t", " ") if yaml_content: data = yaml.safe_load(yaml_content) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 2a675044f..7fbda422f 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -324,7 +324,8 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_EXP_PROBS_B: ( - "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1 + "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1 + "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe ), # Feed-forward up @@ -364,13 +365,13 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_UP_EXP: ( - "layers.{bid}.feed_forward.experts.w3", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx - "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) - "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged) - "model.layers.{bid}.feed_forward.experts.up_proj", # llama4 - "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe + "layers.{bid}.feed_forward.experts.w3", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx + "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe + "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged) + "model.layers.{bid}.feed_forward.experts.up_proj", # llama4 + "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe ), MODEL_TENSOR.FFN_UP_SHEXP: ( @@ -403,12 +404,12 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_GATE_EXP: ( - "layers.{bid}.feed_forward.experts.w1", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx - "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) - "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged) - "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4 + "layers.{bid}.feed_forward.experts.w1", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx + "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe + "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged) + "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4 ), MODEL_TENSOR.FFN_GATE_SHEXP: ( @@ -450,14 +451,14 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_DOWN_EXP: ( - "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx - "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) - "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe - "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged) - "model.layers.{bid}.feed_forward.experts.down_proj", # llama4 - "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe + "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx + "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe + "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe + "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged) + "model.layers.{bid}.feed_forward.experts.down_proj", # llama4 + "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe ), MODEL_TENSOR.FFN_DOWN_SHEXP: ( diff --git a/include/llama.h b/include/llama.h index db6a5337b..1c3a1cd1b 100644 --- a/include/llama.h +++ b/include/llama.h @@ -1394,6 +1394,7 @@ extern "C" { int32_t n_p_eval; int32_t n_eval; + int32_t n_reused; // number of times a ggml compute graph had been reused }; struct llama_perf_sampler_data { diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index ca009adb8..34db4667c 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -d62df60a07ba3deeb85e5cfc9b1ee07645ff35e2 +3323219cd3cc050e5c7133cd4fc1e50d1f590faf diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index 9454d04e5..814ac93a6 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -68,6 +68,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, + { LLM_ARCH_EXAONE4, "exaone4" }, { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" }, { LLM_ARCH_RWKV7, "rwkv7" }, @@ -82,6 +83,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_DOTS1, "dots1" }, { LLM_ARCH_ARCEE, "arcee" }, { LLM_ARCH_ERNIE4_5, "ernie4_5" }, + { LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" }, { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" }, { LLM_ARCH_SMOLLM3, "smollm3" }, { LLM_ARCH_LFM2, "lfm2" }, @@ -1509,6 +1511,26 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_EXAONE4, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + } + }, { LLM_ARCH_RWKV6, { @@ -1825,6 +1847,31 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_ERNIE4_5_MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" }, + }, + }, { LLM_ARCH_HUNYUAN_MOE, { diff --git a/src/llama-arch.h b/src/llama-arch.h index 0ead0d6cd..d09b7d781 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -72,6 +72,7 @@ enum llm_arch { LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, + LLM_ARCH_EXAONE4, LLM_ARCH_RWKV6, LLM_ARCH_RWKV6QWEN2, LLM_ARCH_RWKV7, @@ -86,6 +87,7 @@ enum llm_arch { LLM_ARCH_DOTS1, LLM_ARCH_ARCEE, LLM_ARCH_ERNIE4_5, + LLM_ARCH_ERNIE4_5_MOE, LLM_ARCH_HUNYUAN_MOE, LLM_ARCH_SMOLLM3, LLM_ARCH_LFM2, diff --git a/src/llama-batch.cpp b/src/llama-batch.cpp index f8227777f..a546063c0 100644 --- a/src/llama-batch.cpp +++ b/src/llama-batch.cpp @@ -157,6 +157,8 @@ bool llama_batch_allocr::init( n_outputs += batch.logits[i] != 0; } + has_cpl = false; + // determine coupled sequences // these are pairs of sequences that have at least one token in the input batch that is assigned to both of them for (int32_t i = 0; i < batch.n_tokens; ++i) { @@ -208,7 +210,7 @@ bool llama_batch_allocr::init( LLAMA_LOG_DEBUG("%s: input batch info:\n", __func__); llama_ubatch ubatch { - /*.equal_seqs =*/ false, + /*.b_equal_seqs =*/ false, /*.n_tokens =*/ (uint32_t) batch.n_tokens, /*.n_seq_tokens =*/ (uint32_t) 1, /*.n_seqs =*/ (uint32_t) batch.n_tokens, @@ -221,6 +223,7 @@ bool llama_batch_allocr::init( /*.seq_id_unq =*/ this->seq_id_unq.data(), /*.seq_idx =*/ this->seq_idx.data(), /*.output =*/ batch.logits, + /*.data =*/ {}, }; ubatch_print(ubatch, debug); @@ -364,39 +367,38 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t clear(); split_reset(); - ubatches.emplace_back(); - - auto & ubatch = ubatches.back(); + auto udata = std::make_shared(); - ubatch.token .resize(n_tokens); - ubatch.embd .clear(); - ubatch.pos .resize(n_tokens); - ubatch.n_seq_id .resize(n_tokens); - ubatch.seq_id .resize(n_tokens); - ubatch.seq_id_unq.resize(0); - ubatch.seq_idx .resize(LLAMA_MAX_SEQ, -1); - ubatch.output .resize(n_tokens); + udata->token .resize(n_tokens); + udata->embd .clear(); + udata->pos .resize(n_tokens); + udata->n_seq_id .resize(n_tokens); + udata->seq_id .resize(n_tokens); + udata->seq_id_unq.resize(0); + udata->seq_idx .resize(LLAMA_MAX_SEQ, -1); + udata->output .resize(n_tokens); for (uint32_t s = 0; s < n_seqs; ++s) { - ubatch.seq_idx[s] = s; - ubatch.seq_id_unq.push_back(s); + udata->seq_idx[s] = s; + udata->seq_id_unq.push_back(s); } llama_ubatch res { - /*.equal_seqs =*/ true, + /*.b_equal_seqs =*/ true, /*.n_tokens =*/ n_tokens, /*.n_seq_tokens =*/ n_seq_tokens, /*.n_seqs =*/ n_seqs, /*.n_seqs_unq =*/ n_seqs, - /*.token =*/ ubatch.token.data(), + /*.token =*/ udata->token.data(), /*.embd =*/ nullptr, - /*.pos =*/ ubatch.pos.data(), - /*.n_seq_id =*/ ubatch.n_seq_id.data(), - /*.seq_id =*/ ubatch.seq_id.data(), - /*.seq_id_unq =*/ ubatch.seq_id_unq.data(), - /*.seq_idx =*/ ubatch.seq_idx.data(), - /*.output =*/ ubatch.output.data(), + /*.pos =*/ udata->pos.data(), + /*.n_seq_id =*/ udata->n_seq_id.data(), + /*.seq_id =*/ udata->seq_id.data(), + /*.seq_id_unq =*/ udata->seq_id_unq.data(), + /*.seq_idx =*/ udata->seq_idx.data(), + /*.output =*/ udata->output.data(), + /*.data =*/ std::move(udata), }; return res; @@ -437,8 +439,6 @@ void llama_batch_allocr::split_reset() { used.clear(); used.resize(get_n_tokens(), false); - - ubatches.clear(); } llama_ubatch llama_batch_allocr::split_simple(uint32_t n_ubatch) { @@ -653,78 +653,77 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector & idxs, u assert(n_tokens%n_seqs == 0); - ubatches.emplace_back(); - - auto & ubatch = ubatches.back(); + auto udata = std::make_shared(); const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1; const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0; const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur; - ubatch.token .resize(n_tokens); - ubatch.embd .resize(n_embd_all); - ubatch.pos .resize(n_pos_all); - ubatch.n_seq_id .resize(n_tokens); - ubatch.seq_id .resize(n_tokens); - ubatch.seq_id_unq.resize(0); - ubatch.seq_idx .resize(LLAMA_MAX_SEQ, -1); - ubatch.output .resize(n_tokens); + udata->token .resize(n_tokens); + udata->embd .resize(n_embd_all); + udata->pos .resize(n_pos_all); + udata->n_seq_id .resize(n_tokens); + udata->seq_id .resize(n_tokens); + udata->seq_id_unq.resize(0); + udata->seq_idx .resize(LLAMA_MAX_SEQ, -1); + udata->output .resize(n_tokens); seq_set_t seq_set_unq; for (size_t i = 0; i < idxs.size(); ++i) { if (batch.token) { - ubatch.token[i] = batch.token[idxs[i]]; + udata->token[i] = batch.token[idxs[i]]; } if (batch.embd) { - memcpy(ubatch.embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float)); + memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float)); } for (int j = 0; j < n_pos_cur; ++j) { - ubatch.pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]]; + udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]]; } - ubatch.n_seq_id[i] = batch.n_seq_id[idxs[i]]; - ubatch.seq_id[i] = batch.seq_id[idxs[i]]; - ubatch.output[i] = batch.logits[idxs[i]]; + udata->n_seq_id[i] = batch.n_seq_id[idxs[i]]; + udata->seq_id[i] = batch.seq_id[idxs[i]]; + udata->output[i] = batch.logits[idxs[i]]; - for (int s = 0; s < ubatch.n_seq_id[i]; ++s) { - seq_set_unq.set(ubatch.seq_id[i][s]); + for (int s = 0; s < udata->n_seq_id[i]; ++s) { + seq_set_unq.set(udata->seq_id[i][s]); } - if (ubatch.output[i]) { + if (udata->output[i]) { out_ids.push_back(idxs[i]); } } for (uint32_t s = 0; s < n_seq_max; ++s) { if (seq_set_unq.test(s)) { - ubatch.seq_idx[s] = ubatch.seq_id_unq.size(); - ubatch.seq_id_unq.push_back(s); + udata->seq_idx[s] = udata->seq_id_unq.size(); + udata->seq_id_unq.push_back(s); } } llama_ubatch res { - /*.equal_seqs =*/ equal_seqs, + /*.b_equal_seqs =*/ equal_seqs, /*.n_tokens =*/ n_tokens, /*.n_seq_tokens =*/ n_tokens/n_seqs, /*.n_seqs =*/ n_seqs, - /*.n_seqs_unq =*/ (uint32_t) ubatch.seq_id_unq.size(), - - /*.token =*/ batch.token ? ubatch.token.data() : nullptr, - /*.embd =*/ batch.embd ? ubatch.embd.data() : nullptr, - /*.pos =*/ ubatch.pos.data(), - /*.n_seq_id =*/ ubatch.n_seq_id.data(), - /*.seq_id =*/ ubatch.seq_id.data(), - /*.seq_id_unq =*/ ubatch.seq_id_unq.data(), - /*.seq_idx =*/ ubatch.seq_idx.data(), - /*.output =*/ ubatch.output.data(), + /*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(), + + /*.token =*/ batch.token ? udata->token.data() : nullptr, + /*.embd =*/ batch.embd ? udata->embd.data() : nullptr, + /*.pos =*/ udata->pos.data(), + /*.n_seq_id =*/ udata->n_seq_id.data(), + /*.seq_id =*/ udata->seq_id.data(), + /*.seq_id_unq =*/ udata->seq_id_unq.data(), + /*.seq_idx =*/ udata->seq_idx.data(), + /*.output =*/ udata->output.data(), + /*.data =*/ std::move(udata), }; if (debug > 0) { - LLAMA_LOG_DEBUG("%s: added ubatch %d to split:\n", __func__, (int) ubatches.size() - 1); + LLAMA_LOG_DEBUG("%s: added ubatch to split:\n", __func__); ubatch_print(res, debug); } @@ -734,7 +733,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector & idxs, u void llama_batch_allocr::ubatch_print(const llama_ubatch & ubatch, int debug) { if (debug > 0) { - LLAMA_LOG_DEBUG("%s: equal_seqs = %d\n", __func__, ubatch.equal_seqs); + LLAMA_LOG_DEBUG("%s: equal_seqs = %d\n", __func__, ubatch.equal_seqs()); LLAMA_LOG_DEBUG("%s: n_tokens = %d\n", __func__, ubatch.n_tokens); LLAMA_LOG_DEBUG("%s: n_seq_tokens = %d\n", __func__, ubatch.n_seq_tokens); LLAMA_LOG_DEBUG("%s: n_seqs = %d\n", __func__, ubatch.n_seqs); diff --git a/src/llama-batch.h b/src/llama-batch.h index 1a24440ba..d563adc66 100644 --- a/src/llama-batch.h +++ b/src/llama-batch.h @@ -8,12 +8,17 @@ #include #include #include +#include #include // keep this struct lightweight -// it points to data in `llama_batch_allocr` struct llama_ubatch { - bool equal_seqs; + bool equal_seqs() const { + return b_equal_seqs != 0; + } + + uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment + // otherwise address sanitizer complains // TODO: whole_seqs for embeddings? uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs) @@ -34,6 +39,20 @@ struct llama_ubatch { llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id int32_t * seq_idx; // [LLAMA_MAX_SEQ] | - | seq_idx int8_t * output; // [n_tokens] | i | - + + struct data_t { + std::vector token; + std::vector embd; + std::vector pos; + std::vector n_seq_id; + std::vector seq_id; + std::vector seq_id_unq; + std::vector seq_idx; + std::vector output; + }; + + // the llama_ubatch pointers above point to this data if set. otherwise - points to non-owning data + std::shared_ptr data; }; // a helper for sanitizing, fulfilling and splitting a batch @@ -117,7 +136,7 @@ class llama_batch_allocr { using seq_cpl_t = std::vector; // helper flag to quickly determine if there are any coupled sequences in the batch - bool has_cpl; + bool has_cpl = false; std::vector seq_pos; // seq_pos[s]: the set of positions in sequence s std::vector seq_cpl; // seq_cpl[s0][s1]: if sequence s0 is coupled to sequence s1 @@ -137,20 +156,5 @@ class llama_batch_allocr { // used[i] indicates if token i has already been used in a previous ubatch std::vector used; - // llama_ubatch points to this data: - struct ubatch { - std::vector token; - std::vector embd; - std::vector pos; - std::vector n_seq_id; - std::vector seq_id; - std::vector seq_id_unq; - std::vector seq_idx; - std::vector output; - }; - - // current splitting state: - std::vector ubatches; - int debug; }; diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index 240937ece..80072ad27 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -56,6 +56,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE }, { "minicpm", LLM_CHAT_TEMPLATE_MINICPM }, { "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 }, + { "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 }, { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, @@ -168,6 +169,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) { } else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) { return LLM_CHAT_TEMPLATE_DEEPSEEK_3; } else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) { + if (tmpl_contains("[|tool|]")) { + return LLM_CHAT_TEMPLATE_EXAONE_4; + } // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb // EXAONE-3.0-7.8B-Instruct return LLM_CHAT_TEMPLATE_EXAONE_3; @@ -532,6 +536,22 @@ int32_t llm_chat_apply_template( if (add_ass) { ss << "[|assistant|]"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_4) { + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "user") { + ss << "[|user|]" << trim(message->content) << "\n"; + } else if (role == "assistant") { + ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n"; + } else if (role == "tool") { + ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n"; + } + } + if (add_ass) { + ss << "[|assistant|]"; + } } else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) { // this template requires the model to have "\n\n" as EOT token for (size_t i = 0; i < chat.size(); i++) { diff --git a/src/llama-chat.h b/src/llama-chat.h index cab053348..6968a19fb 100644 --- a/src/llama-chat.h +++ b/src/llama-chat.h @@ -35,6 +35,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_GLMEDGE, LLM_CHAT_TEMPLATE_MINICPM, LLM_CHAT_TEMPLATE_EXAONE_3, + LLM_CHAT_TEMPLATE_EXAONE_4, LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GIGACHAT, diff --git a/src/llama-context.cpp b/src/llama-context.cpp index 840ec9a9a..6eb344736 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -105,7 +105,7 @@ llama_context::llama_context( { const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS"); - const bool supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) : 0; + const bool supports_set_rows = LLAMA_SET_ROWS ? (atoi(LLAMA_SET_ROWS) != 0) : false; if (!supports_set_rows && !cparams.kv_unified) { LLAMA_LOG_WARN("%s: non-unified KV cache requires ggml_set_rows() - forcing unified KV cache\n", __func__); @@ -238,8 +238,8 @@ llama_context::llama_context( LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes); - // buffer used to store the computation graph and the tensor meta data - buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); + gf_res_prev.reset(new llm_graph_result(max_nodes)); + gf_res_reserve.reset(new llm_graph_result(max_nodes)); // TODO: move these checks to ggml_backend_sched // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary @@ -403,10 +403,6 @@ ggml_backend_sched_t llama_context::get_sched() const { return sched.get(); } -ggml_context * llama_context::get_ctx_compute() const { - return ctx_compute.get(); -} - uint32_t llama_context::n_ctx() const { return cparams.n_ctx; } @@ -478,6 +474,11 @@ bool llama_context::kv_self_update(bool optimize) { } } + // reset the previous graph result to make sure that it won't be reused + // TODO: change the mctx->apply() to return information if a graph reserve is needed + // reset the graph result only if the memory module did reset the scheduler + gf_res_prev->reset(); + if (!mctx->apply()) { LLAMA_LOG_ERROR("%s: failed to apply memory update\n", __func__); } @@ -693,38 +694,59 @@ bool llama_context::apply_adapter_cvec( return cvec.apply(model, data, len, n_embd, il_start, il_end); } -llm_graph_result_ptr llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, ggml_status & ret) { +llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, ggml_status & ret) { if (mctx && !mctx->apply()) { LLAMA_LOG_ERROR("%s: failed to apply memory context\n", __func__); ret = GGML_STATUS_FAILED; return nullptr; } - auto * gf = graph_init(); - if (!gf) { - LLAMA_LOG_ERROR("%s: failed to initialize graph\n", __func__); - ret = GGML_STATUS_FAILED; - return nullptr; - } + auto * res = gf_res_prev.get(); + auto * gf = res->get_gf(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, gtype, mctx); - if (!res) { - LLAMA_LOG_ERROR("%s: failed to build graph\n", __func__); - ret = GGML_STATUS_FAILED; - return nullptr; - } + // the new graph parameters + // in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters + const auto gparams = graph_params(res, ubatch, mctx, gtype); - // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + if (res->can_reuse(gparams)) { + //LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__); - if (!ggml_backend_sched_alloc_graph(sched.get(), gf)) { - LLAMA_LOG_ERROR("%s: failed to allocate graph\n", __func__); - ret = GGML_STATUS_ALLOC_FAILED; - return nullptr; + n_reused++; + } else { + res->reset(); + + ggml_backend_sched_reset(sched.get()); + ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); + + //const auto t_start_us = ggml_time_us(); + + gf = model.build_graph(gparams); + + //LLAMA_LOG_INFO("graph build time: %.3f ms\n", (ggml_time_us() - t_start_us)/1000.0); + + if (!gf) { + LLAMA_LOG_ERROR("%s: failed to initialize graph\n", __func__); + ret = GGML_STATUS_FAILED; + return nullptr; + } + + if (!ggml_backend_sched_alloc_graph(sched.get(), gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate graph\n", __func__); + ret = GGML_STATUS_ALLOC_FAILED; + return nullptr; + } } - res->set_inputs(&ubatch); + // set the input data for the input tensors + { + //const auto t_start_us = ggml_time_us(); + + res->set_inputs(&ubatch); + + //LLAMA_LOG_INFO("graph set inputs time: %.3f ms\n", (ggml_time_us() - t_start_us)/1000.0); + } - const auto status = graph_compute(gf, ubatch.n_tokens > 1); + const auto status = graph_compute(res->get_gf(), ubatch.n_tokens > 1); if (status != GGML_STATUS_SUCCESS) { LLAMA_LOG_ERROR("%s: failed to compute graph, compute status: %d\n", __func__, status); ret = status; @@ -785,9 +807,6 @@ int llama_context::encode(const llama_batch & batch_inp) { n_outputs = n_tokens; - ggml_backend_sched_reset(sched.get()); - ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); - const auto causal_attn_org = cparams.causal_attn; // always use non-causal attention for encoder graphs @@ -796,7 +815,7 @@ int llama_context::encode(const llama_batch & batch_inp) { cparams.causal_attn = false; ggml_status status; - const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status); + const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status); cparams.causal_attn = causal_attn_org; @@ -872,10 +891,6 @@ int llama_context::encode(const llama_batch & batch_inp) { } } - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(sched.get()); - // TODO: hacky solution if (model.arch == LLM_ARCH_T5 && t_embd) { //cross.t_embd = t_embd; @@ -1033,11 +1048,8 @@ int llama_context::decode(const llama_batch & batch_inp) { n_outputs = n_outputs_new; } - ggml_backend_sched_reset(sched.get()); - ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); - ggml_status status; - const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mctx.get(), status); + const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mctx.get(), status); if (!res) { // the last ubatch failed or was aborted -> remove all positions of that ubatch from the KV cache @@ -1218,10 +1230,6 @@ int llama_context::decode(const llama_batch & batch_inp) { // wait for the computation to finish (automatically done when obtaining the model output) //synchronize(); - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(sched.get()); - return 0; } @@ -1303,20 +1311,12 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) { // graph // -int32_t llama_context::graph_max_nodes() const { - return std::max(65536, 5*model.n_tensors()); +uint32_t llama_context::graph_max_nodes() const { + return std::max(1024u, 8u*model.n_tensors()); } -ggml_cgraph * llama_context::graph_init() { - ggml_init_params params = { - /*.mem_size =*/ buf_compute_meta.size(), - /*.mem_buffer =*/ buf_compute_meta.data(), - /*.no_alloc =*/ true, - }; - - ctx_compute.reset(ggml_init(params)); - - return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false); +llm_graph_result * llama_context::get_gf_res_reserve() const { + return static_cast(gf_res_reserve.get()); } ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx) { @@ -1329,6 +1329,11 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u LLAMA_LOG_DEBUG("%s: making n_tokens a multiple of n_seqs - n_tokens = %u, n_seqs = %u, n_outputs = %u\n", __func__, n_tokens, n_seqs, n_outputs); } + ggml_backend_sched_reset(sched.get()); + + // when the scheduler is reset, we cannnot reuse the old graph, so we reset the previous graph result to prevent that + gf_res_prev->reset(); + // store the n_outputs as it is, and restore it afterwards // TODO: not sure if needed, might simplify in the future by removing this const auto save_n_outputs = this->n_outputs; @@ -1338,17 +1343,15 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u llama_batch_allocr balloc(model.hparams.n_pos_per_embd()); llama_ubatch ubatch = balloc.ubatch_reserve(n_tokens/n_seqs, n_seqs); - auto * gf = graph_init(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mctx); + auto * res = gf_res_reserve.get(); - this->n_outputs = save_n_outputs; + const auto gparams = graph_params(res, ubatch, mctx, LLM_GRAPH_TYPE_DEFAULT); - if (!res) { - LLAMA_LOG_ERROR("%s: failed to build worst-case graph\n", __func__); - return nullptr; - } + res->reset(); - ggml_backend_sched_reset(sched.get()); + auto * gf = model.build_graph(gparams); + + this->n_outputs = save_n_outputs; // initialize scheduler with the specified graph if (!ggml_backend_sched_reserve(sched.get(), gf)) { @@ -1359,28 +1362,27 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u return gf; } -llm_graph_result_ptr llama_context::graph_build( - ggml_context * ctx, - ggml_cgraph * gf, - const llama_ubatch & ubatch, - llm_graph_type gtype, - const llama_memory_context_i * mctx) { - return model.build_graph( - { - /*.ctx =*/ ctx, - /*.arch =*/ model.arch, - /*.hparams =*/ model.hparams, - /*.cparams =*/ cparams, - /*.ubatch =*/ ubatch, - /*.sched =*/ sched.get(), - /*.backend_cpu =*/ backend_cpu, - /*.cvec =*/ &cvec, - /*.loras =*/ &loras, - /*.mctx =*/ mctx, - /*.cross =*/ &cross, - /*.n_outputs =*/ n_outputs, - /*.cb =*/ graph_get_cb(), - }, gf, gtype); +llm_graph_params llama_context::graph_params( + llm_graph_result * res, + const llama_ubatch & ubatch, + const llama_memory_context_i * mctx, + llm_graph_type gtype) const { + return { + /*.arch =*/ model.arch, + /*.hparams =*/ model.hparams, + /*.cparams =*/ cparams, + /*.ubatch =*/ ubatch, + /*.gtype =*/ gtype, + /*.sched =*/ sched.get(), + /*.backend_cpu =*/ backend_cpu, + /*.cvec =*/ &cvec, + /*.loras =*/ &loras, + /*.mctx =*/ mctx, + /*.cross =*/ &cross, + /*.n_outputs =*/ n_outputs, + /*.cb =*/ graph_get_cb(), + /*.res =*/ res, + }; } ggml_status llama_context::graph_compute( @@ -1958,6 +1960,7 @@ llama_perf_context_data llama_context::perf_get_data() const { data.t_eval_ms = 1e-3 * t_eval_us; data.n_p_eval = std::max(1, n_p_eval); data.n_eval = std::max(1, n_eval); + data.n_reused = std::max(0, n_reused); return data; } @@ -1966,6 +1969,7 @@ void llama_context::perf_reset() { t_start_us = ggml_time_us(); t_eval_us = n_eval = 0; t_p_eval_us = n_p_eval = 0; + n_reused = 0; } // @@ -2092,8 +2096,13 @@ void llama_context::opt_epoch_iter( break; } - auto * gf = graph_init(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mctx.get()); + auto * res = gf_res_prev.get(); + + const auto gparams = graph_params(res, ubatch, mctx.get(), LLM_GRAPH_TYPE_DEFAULT); + + res->reset(); + + auto * gf = model.build_graph(gparams); struct ggml_context * ctx_compute_opt; { @@ -2836,6 +2845,7 @@ void llama_perf_context_print(const llama_context * ctx) { LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval); LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval)); + LLAMA_LOG_INFO("%s: graphs reused = %10d\n", __func__, data.n_reused); } void llama_perf_context_reset(llama_context * ctx) { diff --git a/src/llama-context.h b/src/llama-context.h index 9ce05715a..1601ac682 100644 --- a/src/llama-context.h +++ b/src/llama-context.h @@ -35,8 +35,6 @@ struct llama_context { ggml_backend_sched_t get_sched() const; - ggml_context * get_ctx_compute() const; - uint32_t n_ctx() const; uint32_t n_ctx_per_seq() const; uint32_t n_batch() const; @@ -96,7 +94,7 @@ struct llama_context { // if memory_context is provided, it will be applied first to the context's memory // ret contains the status of the graph computation // returns nullptr only if ret != GGML_STATUS_SUCCESS - llm_graph_result_ptr process_ubatch( + llm_graph_result * process_ubatch( const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, @@ -188,10 +186,10 @@ struct llama_context { // public: - int32_t graph_max_nodes() const; + uint32_t graph_max_nodes() const; - // zero-out inputs and create the ctx_compute for the compute graph - ggml_cgraph * graph_init(); + // can reuse the llm_graph_result instance of the context (for example to update a memory module) + llm_graph_result * get_gf_res_reserve() const; // returns the result of ggml_backend_sched_graph_compute_async execution ggml_status graph_compute(ggml_cgraph * gf, bool batched); @@ -200,12 +198,11 @@ struct llama_context { ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx); private: - llm_graph_result_ptr graph_build( - ggml_context * ctx, - ggml_cgraph * gf, - const llama_ubatch & ubatch, - llm_graph_type gtype, - const llama_memory_context_i * mctx); + llm_graph_params graph_params( + llm_graph_result * res, + const llama_ubatch & ubatch, + const llama_memory_context_i * mctx, + llm_graph_type gtype) const; llm_graph_cb graph_get_cb() const; @@ -258,8 +255,6 @@ struct llama_context { ggml_backend_t backend_cpu = nullptr; std::vector backends; - ggml_context_ptr ctx_compute; - // training ggml_opt_context_t opt_ctx = nullptr; @@ -275,8 +270,8 @@ struct llama_context { std::vector backend_ptrs; std::vector backend_buft; - // memory buffers used to evaluate the model - std::vector buf_compute_meta; + llm_graph_result_ptr gf_res_prev; + llm_graph_result_ptr gf_res_reserve; // host buffer for the model output (logits and embeddings) ggml_backend_buffer_ptr buf_output; @@ -294,4 +289,6 @@ struct llama_context { mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) mutable int32_t n_eval = 0; // number of eval calls + + mutable int32_t n_reused = 0; // number of times the previous graph was reused }; diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 1a6355e85..b63a41053 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -28,6 +28,15 @@ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) { } } +bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) { + bool res = true; + + res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens); + res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens); + + return res; +} + void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) { if (ubatch->pos && pos) { const int64_t n_tokens = ubatch->n_tokens; @@ -50,6 +59,14 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) { } } +bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) { + bool res = true; + + res &= pos->ne[0] == params.ubatch.n_tokens; + + return res; +} + void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) { if (ubatch->pos && attn_scale) { const int64_t n_tokens = ubatch->n_tokens; @@ -71,7 +88,7 @@ void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) { const int64_t n_tokens = ubatch->n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer)); - GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing + GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing int32_t * data = (int32_t *) pos_bucket->data; @@ -118,6 +135,14 @@ void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) { } } +bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) { + bool res = true; + + res &= n_outputs == params.n_outputs; + + return res; +} + void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) { if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = ubatch->n_tokens; @@ -287,6 +312,24 @@ void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) { mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); } +bool llm_graph_input_attn_kv_unified::can_reuse(const llm_graph_params & params) { + const auto * mctx = static_cast(params.mctx); + + this->mctx = mctx; + + bool res = true; + + res &= self_k_idxs->ne[0] == params.ubatch.n_tokens; + //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there + + res &= self_kq_mask->ne[0] == mctx->get_n_kv(); + res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); + + res &= mctx->get_supports_set_rows(); // TODO: tmp + + return res; +} + void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) { mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch); mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch); @@ -299,6 +342,30 @@ void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn); } +bool llm_graph_input_attn_kv_unified_iswa::can_reuse(const llm_graph_params & params) { + const auto * mctx = static_cast(params.mctx); + + this->mctx = mctx; + + bool res = true; + + res &= self_k_idxs->ne[0] == params.ubatch.n_tokens; + //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there + + res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens; + //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there + + res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv(); + res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); + + res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv(); + res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); + + res &= mctx->get_base()->get_supports_set_rows(); // TODO: tmp + + return res; +} + void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) { GGML_ASSERT(cross_kq_mask); @@ -306,7 +373,7 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) { const int64_t n_tokens = ubatch->n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer)); - GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing + GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing float * data = (float *) cross_kq_mask->data; @@ -340,6 +407,91 @@ void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) { inp_rs->set_input(ubatch); } +// +// llm_graph_result +// + +llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) { + reset(); + + const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG"); + debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0; +} + +int64_t llm_graph_result::get_max_nodes() const { + return max_nodes; +} + +void llm_graph_result::reset() { + t_tokens = nullptr; + t_logits = nullptr; + t_embd = nullptr; + t_embd_pooled = nullptr; + + params = {}; + + inputs.clear(); + + buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); + + ggml_init_params params = { + /*.mem_size =*/ buf_compute_meta.size(), + /*.mem_buffer =*/ buf_compute_meta.data(), + /*.no_alloc =*/ true, + }; + + ctx_compute.reset(ggml_init(params)); + + gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false); +} + +void llm_graph_result::set_inputs(const llama_ubatch * ubatch) { + for (auto & input : inputs) { + input->set_input(ubatch); + } +} + +bool llm_graph_result::can_reuse(const llm_graph_params & params) { + if (!this->params.allow_reuse(params)) { + if (debug > 1) { + LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__); + } + + return false; + } + + if (debug > 1) { + LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size()); + } + + bool res = true; + + for (auto & input : inputs) { + const bool cur = input->can_reuse(params); + + if (debug > 1) { + LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur); + } + + res = res && cur; + } + + if (debug > 0) { + LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res); + } + + return res; +} + +llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) { + inputs.emplace_back(std::move(input)); + return inputs.back().get(); +} + +void llm_graph_result::set_params(const llm_graph_params & params) { + this->params = params; +} + // // llm_graph_context // @@ -374,7 +526,6 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) : n_ctx_orig (cparams.n_ctx_orig_yarn), pooling_type (cparams.pooling_type), rope_type (hparams.rope_type), - ctx0 (params.ctx), sched (params.sched), backend_cpu (params.backend_cpu), cvec (params.cvec), @@ -382,7 +533,10 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) : mctx (params.mctx), cross (params.cross), cb_func (params.cb), - res (std::make_unique()) { + res (params.res), + ctx0 (res->get_ctx()), + gf (res->get_gf()) { + res->set_params(params); } void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const { @@ -753,20 +907,28 @@ ggml_tensor * llm_graph_context::build_moe_ffn( cb(cur, "ffn_moe_weighted", il); } + ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr }; + + assert(n_expert_used > 0); + + // order the views before the adds + for (uint32_t i = 0; i < hparams.n_expert_used; ++i) { + cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]); + + ggml_build_forward_expand(gf, cur_experts[i]); + } + // aggregate experts - ggml_tensor * moe_out = nullptr; - for (int i = 0; i < n_expert_used; ++i) { - ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens, - experts->nb[2], i*experts->nb[1]); + // note: here we explicitly use hparams.n_expert_used instead of n_expert_used + // to avoid potentially a large number of add nodes during warmup + // ref: https://github.com/ggml-org/llama.cpp/pull/14753 + ggml_tensor * moe_out = cur_experts[0]; - if (i == 0) { - moe_out = cur_expert; - } else { - moe_out = ggml_add(ctx0, moe_out, cur_expert); - } + for (uint32_t i = 1; i < hparams.n_expert_used; ++i) { + moe_out = ggml_add(ctx0, moe_out, cur_experts[i]); } - if (n_expert_used == 1) { + if (hparams.n_expert_used == 1) { // avoid returning a non-contiguous tensor moe_out = ggml_cont(ctx0, moe_out); } @@ -972,7 +1134,6 @@ ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_t } ggml_tensor * llm_graph_context::build_attn_mha( - ggml_cgraph * gf, ggml_tensor * q, ggml_tensor * k, ggml_tensor * v, @@ -1106,7 +1267,6 @@ llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() con ggml_tensor * llm_graph_context::build_attn( llm_graph_input_attn_no_cache * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, @@ -1127,14 +1287,14 @@ ggml_tensor * llm_graph_context::build_attn( const auto & kq_mask = inp->get_kq_mask(); // [TAG_NO_CACHE_PAD] - // TODO: if ubatch.equal_seqs == true, we can split the three tensors below into ubatch.n_seqs_unq streams - assert(ubatch.equal_seqs == false); + // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams + assert(!ubatch.equal_seqs()); ggml_tensor * q = q_cur; ggml_tensor * k = k_cur; ggml_tensor * v = v_cur; - ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); if (wo) { @@ -1190,7 +1350,6 @@ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() ggml_tensor * llm_graph_context::build_attn( llm_graph_input_attn_kv_unified * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, @@ -1223,7 +1382,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = mctx_cur->get_k(ctx0, il); ggml_tensor * v = mctx_cur->get_v(ctx0, il); - ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); if (wo) { @@ -1243,7 +1402,6 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * llm_graph_context::build_attn( llm_graph_input_attn_kv_unified_iswa * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, @@ -1290,7 +1448,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = mctx_cur->get_k(ctx0, il); ggml_tensor * v = mctx_cur->get_v(ctx0, il); - ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); if (wo) { @@ -1323,7 +1481,6 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const { ggml_tensor * llm_graph_context::build_attn( llm_graph_input_attn_cross * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, @@ -1345,7 +1502,7 @@ ggml_tensor * llm_graph_context::build_attn( ggml_tensor * k = k_cur; ggml_tensor * v = v_cur; - ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); + ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); if (wo) { @@ -1403,7 +1560,6 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif } ggml_tensor * llm_graph_context::build_rs( - ggml_cgraph * gf, ggml_tensor * s, ggml_tensor * state_copy, int32_t state_size, @@ -1461,21 +1617,19 @@ llm_graph_input_rs * llm_graph_context::build_rs_inp() const { ggml_tensor * llm_graph_context::build_rs( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * s, int32_t state_size, int32_t n_seqs, const llm_graph_get_rows_fn & get_state_rows) const { const auto * kv_state = inp->mctx; - return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows); + return build_rs(s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows); } ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( llm_graph_input_rs * inp, - ggml_cgraph * gf, const llama_ubatch & ubatch, - int il) const { + int il) const { const auto * mctx_cur = static_cast(mctx); const auto token_shift_count = hparams.token_shift_count; @@ -1485,7 +1639,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( ggml_tensor * token_shift_all = mctx_cur->get_r_l(il); ggml_tensor * token_shift = build_rs( - inp, gf, token_shift_all, + inp, token_shift_all, hparams.n_embd_r(), n_seqs); token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs); @@ -1525,7 +1679,6 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { } void llm_graph_context::build_pooling( - ggml_cgraph * gf, ggml_tensor * cls, ggml_tensor * cls_b, ggml_tensor * cls_out, diff --git a/src/llama-graph.h b/src/llama-graph.h index 84a5b0b3f..a28a8c4bd 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -1,6 +1,7 @@ #pragma once #include "llama-arch.h" +#include "llama-batch.h" #include "llama-hparams.h" #include "llama-adapter.h" @@ -14,7 +15,6 @@ struct ggml_cgraph; struct ggml_context; struct ggml_tensor; -struct llama_ubatch; struct llama_cparams; struct llama_memory_context_i; @@ -69,6 +69,8 @@ struct llama_cross { std::vector> seq_ids_enc; }; +struct llm_graph_params; + // // llm_graph_input // @@ -78,11 +80,19 @@ class llm_graph_input_i { virtual ~llm_graph_input_i() = default; virtual void set_input(const llama_ubatch * ubatch) = 0; + + // return true if the resulting input tensors using the provided graph parameters would be + // the same as the previous input tensors that we have currently stored in the object + virtual bool can_reuse(const llm_graph_params & params) { + // returning false here by default will prevent from reusing the graph if the check + // for the input type has not been implemented yet + GGML_UNUSED(params); + return false; + } }; using llm_graph_input_ptr = std::unique_ptr; - class llm_graph_input_embd : public llm_graph_input_i { public: llm_graph_input_embd() = default; @@ -90,6 +100,8 @@ class llm_graph_input_embd : public llm_graph_input_i { void set_input(const llama_ubatch * ubatch) override; + bool can_reuse(const llm_graph_params & params) override; + ggml_tensor * tokens = nullptr; // I32 [n_batch] ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch] }; @@ -101,6 +113,8 @@ class llm_graph_input_pos : public llm_graph_input_i { void set_input(const llama_ubatch * ubatch) override; + bool can_reuse(const llm_graph_params & params) override; + ggml_tensor * pos = nullptr; // I32 [n_batch] const uint32_t n_pos_per_embd = 1; @@ -154,17 +168,19 @@ class llm_graph_input_out_ids : public llm_graph_input_i { llm_graph_input_out_ids( const llama_hparams & hparams, const llama_cparams & cparams, - int32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {} + uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {} virtual ~llm_graph_input_out_ids() = default; void set_input(const llama_ubatch * ubatch) override; + bool can_reuse(const llm_graph_params & params) override; + ggml_tensor * out_ids; // I32 [n_outputs] const llama_hparams & hparams; const llama_cparams & cparams; - const int32_t n_outputs; + const uint32_t n_outputs; }; class llm_graph_input_mean : public llm_graph_input_i { @@ -249,6 +265,8 @@ class llm_graph_input_attn_kv_unified : public llm_graph_input_i { void set_input(const llama_ubatch * ubatch) override; + bool can_reuse(const llm_graph_params & params) override; + ggml_tensor * get_k_idxs() const { return self_k_idxs; } ggml_tensor * get_v_idxs() const { return self_v_idxs; } @@ -280,6 +298,8 @@ class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i { void set_input(const llama_ubatch * ubatch) override; + bool can_reuse(const llm_graph_params & params) override; + ggml_tensor * get_k_idxs() const { return self_k_idxs; } ggml_tensor * get_v_idxs() const { return self_v_idxs; } ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; } @@ -351,40 +371,108 @@ class llm_graph_input_mem_hybrid : public llm_graph_input_i { // along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc. // these are used by the llama_context to extact the relevant data, based on the compute parameters -class llm_graph_result_i { -public: - virtual ~llm_graph_result_i() = default; +// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) +using llm_graph_cb = std::function; - virtual ggml_tensor * get_tokens() = 0; - virtual ggml_tensor * get_logits() = 0; - virtual ggml_tensor * get_embd() = 0; - virtual ggml_tensor * get_embd_pooled() = 0; +class llm_graph_result; - virtual void set_inputs(const llama_ubatch * ubatch) = 0; -}; +struct llm_graph_params { + llm_arch arch = LLM_ARCH_UNKNOWN; -using llm_graph_result_ptr = std::unique_ptr; + llama_hparams hparams; + llama_cparams cparams; + llama_ubatch ubatch; // note: intentionally make a copy -class llm_graph_result : public llm_graph_result_i { -public: - virtual ~llm_graph_result() = default; + llm_graph_type gtype; - ggml_tensor * get_tokens() override { return t_tokens; } - ggml_tensor * get_logits() override { return t_logits; } - ggml_tensor * get_embd() override { return t_embd; } - ggml_tensor * get_embd_pooled() override { return t_embd_pooled; } + ggml_backend_sched_t sched; + ggml_backend_t backend_cpu; - void set_inputs(const llama_ubatch * ubatch) override { - for (auto & input : inputs) { - input->set_input(ubatch); + const llama_adapter_cvec * cvec; + const llama_adapter_loras * loras; + const llama_memory_context_i * mctx; + const llama_cross * cross; + + uint32_t n_outputs; + + llm_graph_cb cb; + + llm_graph_result * res; + + // return true if the "other" params would result in a graph with the same topology as with the current params + // having the same topology allows us to reuse the graph in some cases + bool allow_reuse(const llm_graph_params & other) const { + // first check the ubatch + bool can_reuse_ubatch = + ubatch.equal_seqs() == other.ubatch.equal_seqs() && + ubatch.n_tokens == other.ubatch.n_tokens && + ubatch.n_seq_tokens == other.ubatch.n_seq_tokens && + ubatch.n_seqs == other.ubatch.n_seqs && + ubatch.n_seqs_unq == other.ubatch.n_seqs_unq && + ( + (!ubatch.token && !other.ubatch.token) || + (!ubatch.embd && !other.ubatch.embd) + ); + + if (can_reuse_ubatch && !ubatch.equal_seqs()) { + if (!ubatch.data) { + // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and + // therefore we cannot perform the sequence id check. normally should never happen + can_reuse_ubatch = false; + } else { + for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { + can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s]; + } + } } - } - llm_graph_input_i * add_input(llm_graph_input_ptr input) { - inputs.emplace_back(std::move(input)); - return inputs.back().get(); + if (!can_reuse_ubatch) { + return false; + } + + return + cparams.embeddings == other.cparams.embeddings && + cparams.causal_attn == other.cparams.causal_attn && + arch == other.arch && + gtype == other.gtype && + cvec == other.cvec && + loras == other.loras && + cross == other.cross && + n_outputs == other.n_outputs; } +}; + +class llm_graph_result { +public: + llm_graph_result(int64_t max_nodes); + + virtual ~llm_graph_result() = default; + + ggml_tensor * get_tokens() const { return t_tokens; } + ggml_tensor * get_logits() const { return t_logits; } + ggml_tensor * get_embd() const { return t_embd; } + ggml_tensor * get_embd_pooled() const { return t_embd_pooled; } + + ggml_cgraph * get_gf() const { return gf; } + ggml_context * get_ctx() const { return ctx_compute.get(); } + + int64_t get_max_nodes() const; + + void reset(); + + void set_inputs(const llama_ubatch * ubatch); + + // try to update the existing graph result using the new graph parameters in order to reuse it + // this can only be done if we determine that the resulting graph using the new graph parameters + // would be identical to the existing graph. in that case, we simply have to update the memory + // contexts of the input tensors of the graph and we can reuse it for another computation + // return true if the graph was updated and can be reused + bool can_reuse(const llm_graph_params & params); + + llm_graph_input_i * add_input(llm_graph_input_ptr input); + + void set_params(const llm_graph_params & params); // important graph nodes ggml_tensor * t_tokens = nullptr; @@ -393,36 +481,31 @@ class llm_graph_result : public llm_graph_result_i { ggml_tensor * t_embd_pooled = nullptr; std::vector inputs; -}; -// -// llm_graph_context -// + ggml_context_ptr ctx_compute; -// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) -using llm_graph_cb = std::function; + // memory buffers used to evaluate the model + std::vector buf_compute_meta; -struct llm_graph_params { - ggml_context * ctx; + ggml_cgraph * gf; - const llm_arch arch; + int64_t max_nodes; - const llama_hparams & hparams; - const llama_cparams & cparams; - const llama_ubatch & ubatch; +private: + // keep a copy of the previous graph parameters + // we will use this to determine whether the graph can be reused by comparing them with the new parameters + // note: these are updated after constructing the new graph + llm_graph_params params; - ggml_backend_sched_t sched; - ggml_backend_t backend_cpu; - - const llama_adapter_cvec * cvec; - const llama_adapter_loras * loras; - const llama_memory_context_i * mctx; - const llama_cross * cross; + // env: LLAMA_GRAPH_RESULT_DEBUG + int debug = 0; +}; - uint32_t n_outputs; +using llm_graph_result_ptr = std::unique_ptr; - const llm_graph_cb & cb; -}; +// +// llm_graph_context +// // used in build_rs to properly order writes and avoid unnecessary copies using llm_graph_get_rows_fn = std::function; @@ -463,8 +546,6 @@ struct llm_graph_context { const enum llama_pooling_type pooling_type; const enum llama_rope_type rope_type; - ggml_context * ctx0 = nullptr; - ggml_backend_sched_t sched; ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove? @@ -476,7 +557,10 @@ struct llm_graph_context { const llm_graph_cb & cb_func; - std::unique_ptr res; + llm_graph_result * res; + + ggml_context * ctx0 = nullptr; + ggml_cgraph * gf = nullptr; llm_graph_context(const llm_graph_params & params); virtual ~llm_graph_context() = default; @@ -562,7 +646,6 @@ struct llm_graph_context { // ggml_tensor * build_attn_mha( - ggml_cgraph * gf, ggml_tensor * q, // [n_embd_head_q, n_head_q, n_tokens] ggml_tensor * k, // [n_embd_head_k, n_head_k, n_tokens] ggml_tensor * v, // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false) @@ -575,7 +658,6 @@ struct llm_graph_context { ggml_tensor * build_attn( llm_graph_input_attn_no_cache * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens] @@ -590,7 +672,6 @@ struct llm_graph_context { ggml_tensor * build_attn( llm_graph_input_attn_kv_unified * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens] @@ -606,7 +687,6 @@ struct llm_graph_context { // note: if k_cur or v_cur are not provided, they will not be stored in the memory ggml_tensor * build_attn( llm_graph_input_attn_kv_unified_iswa * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens] @@ -621,7 +701,6 @@ struct llm_graph_context { ggml_tensor * build_attn( llm_graph_input_attn_cross * inp, - ggml_cgraph * gf, ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens] @@ -643,7 +722,6 @@ struct llm_graph_context { // implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in // `llama_memory_recurrent` ggml_tensor * build_rs( - ggml_cgraph * gf, ggml_tensor * s, ggml_tensor * state_copy, int32_t state_size, @@ -658,7 +736,6 @@ struct llm_graph_context { ggml_tensor * build_rs( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * s, int32_t state_size, int32_t n_seqs, @@ -666,9 +743,8 @@ struct llm_graph_context { ggml_tensor * build_rwkv_token_shift_load( llm_graph_input_rs * inp, - ggml_cgraph * gf, const llama_ubatch & ubatch, - int il) const; + int il) const; ggml_tensor * build_rwkv_token_shift_store( ggml_tensor * token_shift, @@ -685,7 +761,6 @@ struct llm_graph_context { // void build_pooling( - ggml_cgraph * gf, ggml_tensor * cls, ggml_tensor * cls_b, ggml_tensor * cls_out, diff --git a/src/llama-kv-cache-unified.cpp b/src/llama-kv-cache-unified.cpp index 7e92e6b4d..321dc79fc 100644 --- a/src/llama-kv-cache-unified.cpp +++ b/src/llama-kv-cache-unified.cpp @@ -193,7 +193,7 @@ llama_kv_cache_unified::llama_kv_cache_unified( debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0; const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS"); - supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) : 0; + supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) != 0 : 0; if (!supports_set_rows) { // ref: https://github.com/ggml-org/llama.cpp/pull/14363 @@ -656,14 +656,11 @@ bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const d if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { ggml_backend_sched_reset(sched); - auto * gf = lctx->graph_init(); + auto * res = lctx->get_gf_res_reserve(); - auto res = build_graph_shift(lctx->get_cparams(), lctx->get_ctx_compute(), gf); - if (!res) { - LLAMA_LOG_ERROR("%s: failed to build graph for K-shift\n", __func__); - return updated; - } + res->reset(); + auto * gf = build_graph_shift(res, lctx); if (!ggml_backend_sched_alloc_graph(sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__); return updated; @@ -713,14 +710,11 @@ bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const d ggml_backend_sched_reset(sched); - auto * gf = lctx->graph_init(); + auto * res = lctx->get_gf_res_reserve(); - auto res = build_graph_defrag(lctx->get_cparams(), lctx->get_ctx_compute(), gf, dinfo); - if (!res) { - LLAMA_LOG_ERROR("%s: failed to build graph for defrag\n", __func__); - return updated; - } + res->reset(); + auto * gf = build_graph_defrag(res, lctx, dinfo); if (!ggml_backend_sched_alloc_graph(sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__); return updated; @@ -1035,6 +1029,10 @@ uint32_t llama_kv_cache_unified::get_n_kv() const { return result; } +bool llama_kv_cache_unified::get_supports_set_rows() const { + return supports_set_rows; +} + ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const { const int32_t ikv = map_layer_ids.at(il); @@ -1263,7 +1261,7 @@ void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const { const auto & cells = v_cells[s]; for (uint32_t i = 0; i < cells.size(); ++i) { - data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i); + data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i); } } } @@ -1283,6 +1281,8 @@ void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ub const int64_t n_tps = n_tokens/n_stream; const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD); + std::fill(data, data + ggml_nelements(dst), -INFINITY); + // Use only the previous KV cells of the correct sequence for each token of the ubatch. // It's assumed that if a token in the batch has multiple sequences, they are equivalent. // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: @@ -1295,6 +1295,7 @@ void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ub // xxxxx----- // xxxxx----- // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 + // TODO: optimize this section for (uint32_t h = 0; h < 1; ++h) { for (uint32_t s = 0; s < n_stream; ++s) { for (uint32_t ii = 0; ii < n_tps; ++ii) { @@ -1306,44 +1307,31 @@ void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ub const llama_pos p1 = ubatch->pos[i]; - for (uint32_t j = 0; j < n_kv; ++j) { - float f = 0.0f; - - bool masked = false; + const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii); + for (uint32_t j = 0; j < n_kv; ++j) { if (cells.is_empty(j)) { - masked = true; - } else { - const llama_pos p0 = cells.pos_get(j); - - // mask the token if not the same sequence - masked = masked || (!cells.seq_has(j, seq_id)); + continue; + } - // mask future tokens - masked = masked || (causal_attn && p0 > p1); + // mask the token if not the same sequence + if (!cells.seq_has(j, seq_id)) { + continue; + } - // apply SWA if any - masked = masked || (is_masked_swa(p0, p1)); + const llama_pos p0 = cells.pos_get(j); - if (!masked && hparams.use_alibi) { - f = -std::abs(p0 - p1); - } + // mask future tokens + if (causal_attn && p0 > p1) { + continue; } - if (masked) { - f = -INFINITY; + // apply SWA if any + if (is_masked_swa(p0, p1)) { + continue; } - data[h*n_stream*n_tps_pad*n_kv + s*n_tps_pad*n_kv + ii*n_kv + j] = f; - } - - // mask padded tokens - if (data) { - for (uint32_t ii = n_tps; ii < n_tps_pad; ++ii) { - for (uint32_t j = 0; j < n_kv; ++j) { - data[h*n_stream*n_tps_pad*n_kv + s*n_tps_pad*n_kv + ii*n_kv + j] = -INFINITY; - } - } + data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f; } } } @@ -1357,7 +1345,7 @@ void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama const auto & cells = v_cells[0]; GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); - GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing + GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing int32_t * data = (int32_t *) dst->data; @@ -1475,11 +1463,9 @@ void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { } } -llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const { - auto res = std::make_unique(); +ggml_cgraph * llama_kv_cache_unified::build_graph_shift(llm_graph_result * res, llama_context * lctx) const { + auto * ctx = res->get_ctx(); + auto * gf = res->get_gf(); const auto & n_embd_head_k = hparams.n_embd_head_k; //const auto & n_embd_head_v = hparams.n_embd_head_v; @@ -1489,6 +1475,8 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream); ggml_set_input(inp->k_shift); + const auto & cparams = lctx->get_cparams(); + for (const auto & layer : layers) { const uint32_t il = layer.il; @@ -1514,15 +1502,15 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( res->add_input(std::move(inp)); - return res; + return gf; } -llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf, - const defrag_info & dinfo) const { - auto res = std::make_unique(); +ggml_cgraph * llama_kv_cache_unified::build_graph_defrag( + llm_graph_result * res, + llama_context * lctx, + const defrag_info & dinfo) const { + auto * ctx = res->get_ctx(); + auto * gf = res->get_gf(); GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag"); @@ -1530,6 +1518,8 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( const auto & ids = dinfo.ids; + const auto & cparams = lctx->get_cparams(); + #if 0 // CPU defrag // @@ -1666,7 +1656,7 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); #endif - return res; + return gf; } llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const { @@ -2342,6 +2332,10 @@ uint32_t llama_kv_cache_unified_context::get_n_kv() const { return n_kv; } +bool llama_kv_cache_unified_context::get_supports_set_rows() const { + return kv->get_supports_set_rows(); +} + ggml_tensor * llama_kv_cache_unified_context::get_k(ggml_context * ctx, int32_t il) const { return kv->get_k(ctx, il, n_kv, sinfos[i_cur]); } diff --git a/src/llama-kv-cache-unified.h b/src/llama-kv-cache-unified.h index 3bfda4600..3e28e346c 100644 --- a/src/llama-kv-cache-unified.h +++ b/src/llama-kv-cache-unified.h @@ -154,6 +154,9 @@ class llama_kv_cache_unified : public llama_memory_i { uint32_t get_n_kv() const; + // TODO: temporary + bool get_supports_set_rows() const; + // get views of the current state of the cache ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const; ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const; @@ -227,7 +230,7 @@ class llama_kv_cache_unified : public llama_memory_i { // env: LLAMA_SET_ROWS (temporary) // ref: https://github.com/ggml-org/llama.cpp/pull/14285 - int supports_set_rows = false; + bool supports_set_rows = false; const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; @@ -270,15 +273,13 @@ class llama_kv_cache_unified : public llama_memory_i { float freq_base, float freq_scale) const; - llm_graph_result_ptr build_graph_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const; + ggml_cgraph * build_graph_shift( + llm_graph_result * res, + llama_context * lctx) const; - llm_graph_result_ptr build_graph_defrag( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf, + ggml_cgraph * build_graph_defrag( + llm_graph_result * res, + llama_context * lctx, const defrag_info & dinfo) const; struct cell_ranges_t { @@ -340,6 +341,9 @@ class llama_kv_cache_unified_context : public llama_memory_context_i { uint32_t get_n_kv() const; + // TODO: temporary + bool get_supports_set_rows() const; + // get views of the current state of the cache ggml_tensor * get_k(ggml_context * ctx, int32_t il) const; ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; diff --git a/src/llama-memory-recurrent.cpp b/src/llama-memory-recurrent.cpp index 2c1ae6709..c0c2ec084 100644 --- a/src/llama-memory-recurrent.cpp +++ b/src/llama-memory-recurrent.cpp @@ -446,7 +446,7 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) { // A slot should be always be contiguous. // can only process batches with an equal number of new tokens in each sequence - GGML_ASSERT(ubatch.equal_seqs); + GGML_ASSERT(ubatch.equal_seqs()); int32_t min = size - 1; int32_t max = 0; @@ -768,6 +768,8 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std:: // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) + if (r_l[il] == nullptr) continue; // Write key type const int32_t r_type_i = (int32_t)r_l[il]->type; @@ -787,6 +789,8 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std:: if (!s_trans) { for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) + if (s_l[il] == nullptr) continue; // Write value type const int32_t s_type_i = (int32_t)s_l[il]->type; @@ -807,6 +811,9 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std:: // When v is transposed, we also need the element size and get the element ranges from each row const uint32_t mem_size = size; for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null) + if (s_l[il] == nullptr) continue; + const uint32_t n_embd_s = hparams.n_embd_s(); // Write value type @@ -951,6 +958,8 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers + if (r_l[il] == nullptr) continue; // Read type of key int32_t r_type_i_ref; @@ -978,11 +987,14 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell if (!s_trans) { for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers + if (s_l[il] == nullptr) continue; // Read type of value int32_t s_type_i_ref; io.read_to(&s_type_i_ref, sizeof(s_type_i_ref)); const int32_t s_type_i = (int32_t)s_l[il]->type; + if (s_type_i != s_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il); return false; @@ -1005,6 +1017,9 @@ bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell } else { // For each layer, read the values for each cell (transposed) for (uint32_t il = 0; il < n_layer; ++il) { + // skip null layers + if (s_l[il] == nullptr) continue; + const uint32_t n_embd_s = hparams.n_embd_s(); // Read type of value diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 9d8a686e0..35e718aa9 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -107,8 +107,10 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_17B_16E: return "17Bx16E (Scout)"; case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)"; case LLM_TYPE_A13B: return "A13B"; + case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; + case LLM_TYPE_300B_A47B: return "300B.A47B"; case LLM_TYPE_E2B: return "E2B"; case LLM_TYPE_E4B: return "E4B"; default: return "?B"; @@ -1488,6 +1490,23 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_EXAONE4: + { + if (hparams.n_layer == 64) { // 32B + hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; + hparams.n_swa = 4096; + hparams.set_swa_pattern(4); + } + + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 30: type = LLM_TYPE_1_2B; break; + case 64: type = LLM_TYPE_32B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: { @@ -1525,7 +1544,11 @@ void llama_model::load_hparams(llama_model_loader & ml) { ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false); switch (hparams.n_layer) { - case 12: type = LLM_TYPE_190M; break; + case 12: + switch (hparams.n_embd) { + case 768: type = LLM_TYPE_190M; break; + default: type = LLM_TYPE_UNKNOWN; + } break; case 24: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_450M; break; @@ -1538,7 +1561,17 @@ void llama_model::load_hparams(llama_model_loader & ml) { case 3584: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; - case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World + case 32: + switch (hparams.n_embd) { + case 2560: type = LLM_TYPE_2_9B; break; + case 4096: type = LLM_TYPE_7B; break; + default: type = LLM_TYPE_UNKNOWN; + } break; + case 61: + switch (hparams.n_embd) { + case 4096: type = LLM_TYPE_14B; break; + default: type = LLM_TYPE_UNKNOWN; + } break; default: type = LLM_TYPE_UNKNOWN; } } break; @@ -1649,10 +1682,20 @@ void llama_model::load_hparams(llama_model_loader & ml) { } } break; case LLM_ARCH_ERNIE4_5: + case LLM_ARCH_ERNIE4_5_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + if (arch == LLM_ARCH_ERNIE4_5_MOE) { + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); + ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + } + switch (hparams.n_layer) { case 18: type = LLM_TYPE_0_3B; break; + case 28: type = LLM_TYPE_21B_A3B; break; + case 54: type = LLM_TYPE_300B_A47B; break; default: type = LLM_TYPE_UNKNOWN; } } break; @@ -4343,6 +4386,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; + case LLM_ARCH_EXAONE4: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (output == NULL) { + output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + + layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); + + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); + } + } break; case LLM_ARCH_RWKV6: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -4858,6 +4934,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { } } break; case LLM_ARCH_ERNIE4_5: + case LLM_ARCH_ERNIE4_5_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -4886,9 +4963,27 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); - layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); - layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + + if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast(i) >= hparams.n_layer_dense_lead) { // MoE layers + int n_ff_exp = hparams.n_ff_exp; + + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + + // Shared expert (if present) + if (hparams.n_ff_shexp > 0) { + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0); + } + } else { // Dense layers + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + } } } break; case LLM_ARCH_FALCON_H1: @@ -5493,7 +5588,7 @@ ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int i } struct llm_build_llama : public llm_graph_context { - llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -5569,7 +5664,7 @@ struct llm_build_llama : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -5649,7 +5744,7 @@ struct llm_build_llama : public llm_graph_context { }; struct llm_build_llama_iswa : public llm_graph_context { - llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -5743,7 +5838,7 @@ struct llm_build_llama_iswa : public llm_graph_context { cb(Kcur, "Kcur_normed", il); } - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -5832,7 +5927,7 @@ struct llm_build_llama_iswa : public llm_graph_context { }; struct llm_build_deci : public llm_graph_context { - llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -5920,7 +6015,7 @@ struct llm_build_deci : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } @@ -5988,7 +6083,7 @@ struct llm_build_deci : public llm_graph_context { }; struct llm_build_baichuan : public llm_graph_context { - llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -6052,7 +6147,7 @@ struct llm_build_baichuan : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6110,7 +6205,7 @@ struct llm_build_baichuan : public llm_graph_context { }; struct llm_build_xverse : public llm_graph_context { - llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_xverse(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -6167,7 +6262,7 @@ struct llm_build_xverse : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6223,7 +6318,7 @@ struct llm_build_xverse : public llm_graph_context { }; struct llm_build_falcon : public llm_graph_context { - llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -6290,7 +6385,7 @@ struct llm_build_falcon : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6345,7 +6440,7 @@ struct llm_build_falcon : public llm_graph_context { }; struct llm_build_grok : public llm_graph_context { - llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -6420,7 +6515,7 @@ struct llm_build_grok : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -6507,7 +6602,7 @@ struct llm_build_grok : public llm_graph_context { }; struct llm_build_dbrx : public llm_graph_context { - llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -6569,7 +6664,7 @@ struct llm_build_dbrx : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6632,7 +6727,7 @@ struct llm_build_dbrx : public llm_graph_context { }; struct llm_build_starcoder : public llm_graph_context { - llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -6683,7 +6778,7 @@ struct llm_build_starcoder : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6741,7 +6836,7 @@ struct llm_build_starcoder : public llm_graph_context { }; struct llm_build_refact : public llm_graph_context { - llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -6782,7 +6877,7 @@ struct llm_build_refact : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -6840,7 +6935,7 @@ struct llm_build_refact : public llm_graph_context { }; struct llm_build_bert : public llm_graph_context { - llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -6939,7 +7034,7 @@ struct llm_build_bert : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cb(cur, "kqv_out", il); @@ -7026,7 +7121,7 @@ struct llm_build_bert : public llm_graph_context { }; struct llm_build_neo_bert : public llm_graph_context { - llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -7084,7 +7179,7 @@ struct llm_build_neo_bert : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cb(cur, "kqv_out", il); @@ -7136,7 +7231,7 @@ struct llm_build_neo_bert : public llm_graph_context { }; struct llm_build_bloom : public llm_graph_context { - llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -7184,7 +7279,7 @@ struct llm_build_bloom : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -7242,7 +7337,7 @@ struct llm_build_bloom : public llm_graph_context { }; struct llm_build_mpt : public llm_graph_context { - llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -7331,7 +7426,7 @@ struct llm_build_mpt : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -7390,7 +7485,7 @@ struct llm_build_mpt : public llm_graph_context { }; struct llm_build_stablelm : public llm_graph_context { - llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -7477,7 +7572,7 @@ struct llm_build_stablelm : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -7542,7 +7637,7 @@ struct llm_build_stablelm : public llm_graph_context { }; struct llm_build_qwen : public llm_graph_context { - llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -7598,7 +7693,7 @@ struct llm_build_qwen : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -7656,7 +7751,7 @@ struct llm_build_qwen : public llm_graph_context { }; struct llm_build_qwen2 : public llm_graph_context { - llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -7718,7 +7813,7 @@ struct llm_build_qwen2 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -7778,7 +7873,7 @@ struct llm_build_qwen2 : public llm_graph_context { }; struct llm_build_dream : public llm_graph_context { - llm_build_dream(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : + llm_build_dream(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { //copied from qwen2 const int64_t n_embd_head = hparams.n_embd_head_v; @@ -7834,7 +7929,7 @@ struct llm_build_dream : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); } @@ -7881,7 +7976,7 @@ struct llm_build_dream : public llm_graph_context { }; struct llm_build_qwen2vl : public llm_graph_context { - llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -7946,7 +8041,7 @@ struct llm_build_qwen2vl : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8002,7 +8097,7 @@ struct llm_build_qwen2vl : public llm_graph_context { }; struct llm_build_qwen2moe : public llm_graph_context { - llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -8073,7 +8168,7 @@ struct llm_build_qwen2moe : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8161,7 +8256,7 @@ struct llm_build_qwen2moe : public llm_graph_context { }; struct llm_build_qwen3 : public llm_graph_context { - llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -8226,7 +8321,7 @@ struct llm_build_qwen3 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8282,7 +8377,7 @@ struct llm_build_qwen3 : public llm_graph_context { }; struct llm_build_qwen3moe : public llm_graph_context { - llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -8347,7 +8442,7 @@ struct llm_build_qwen3moe : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8410,7 +8505,7 @@ struct llm_build_qwen3moe : public llm_graph_context { }; struct llm_build_phi2 : public llm_graph_context { - llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -8487,7 +8582,7 @@ struct llm_build_phi2 : public llm_graph_context { // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -8541,7 +8636,7 @@ struct llm_build_phi2 : public llm_graph_context { template struct llm_build_phi3 : public llm_graph_context { - llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -8624,7 +8719,7 @@ struct llm_build_phi3 : public llm_graph_context { Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); cb(Qcur, "Qcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -8699,7 +8794,7 @@ struct llm_build_phi3 : public llm_graph_context { }; struct llm_build_plamo : public llm_graph_context { - llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -8758,7 +8853,7 @@ struct llm_build_plamo : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8814,7 +8909,7 @@ struct llm_build_plamo : public llm_graph_context { }; struct llm_build_gpt2 : public llm_graph_context { - llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -8866,7 +8961,7 @@ struct llm_build_gpt2 : public llm_graph_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -8924,7 +9019,7 @@ struct llm_build_gpt2 : public llm_graph_context { }; struct llm_build_codeshell : public llm_graph_context { - llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -8980,7 +9075,7 @@ struct llm_build_codeshell : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -9038,7 +9133,7 @@ struct llm_build_codeshell : public llm_graph_context { }; struct llm_build_orion : public llm_graph_context { - llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -9109,7 +9204,7 @@ struct llm_build_orion : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -9165,7 +9260,7 @@ struct llm_build_orion : public llm_graph_context { }; struct llm_build_internlm2 : public llm_graph_context { - llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_internlm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -9236,7 +9331,7 @@ struct llm_build_internlm2 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -9292,7 +9387,7 @@ struct llm_build_internlm2 : public llm_graph_context { }; struct llm_build_minicpm3 : public llm_graph_context { - llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { //TODO: if the model varies, these parameters need to be read from the model const int64_t n_embd_base = 256; const float scale_embd = 12.0f; @@ -9424,7 +9519,7 @@ struct llm_build_minicpm3 : public llm_graph_context { ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); cb(k_states, "k_states", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, q_states, k_states, v_states, nullptr, nullptr, kq_scale, il); } @@ -9496,7 +9591,7 @@ struct llm_build_minicpm3 : public llm_graph_context { }; struct llm_build_gemma : public llm_graph_context { - llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; ggml_tensor * cur; @@ -9554,7 +9649,7 @@ struct llm_build_gemma : public llm_graph_context { Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); cb(Qcur, "Qcur_scaled", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -9612,7 +9707,7 @@ struct llm_build_gemma : public llm_graph_context { }; struct llm_build_gemma2_iswa : public llm_graph_context { - llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_k; ggml_tensor * cur; @@ -9669,7 +9764,7 @@ struct llm_build_gemma2_iswa : public llm_graph_context { Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -9742,7 +9837,7 @@ struct llm_build_gemma2_iswa : public llm_graph_context { }; struct llm_build_gemma3_iswa : public llm_graph_context { - llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_k; ggml_tensor * cur; @@ -9811,7 +9906,7 @@ struct llm_build_gemma3_iswa : public llm_graph_context { // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315 Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } @@ -9880,7 +9975,6 @@ struct llm_build_gemma3_iswa : public llm_graph_context { struct llm_build_gemma3n_iswa : public llm_graph_context { const llama_model & model; - ggml_cgraph * gf; const int64_t n_embd_head; const int64_t n_embd_altup; @@ -9890,10 +9984,9 @@ struct llm_build_gemma3n_iswa : public llm_graph_context { const int n_layer_sparsity = 10; // number of layers using activation sparsity const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95) - llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) + llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model), - gf(gf), n_embd_head(model.hparams.n_embd_head_k), n_embd_altup(model.hparams.n_embd_altup), n_altup(model.hparams.n_altup), @@ -9994,7 +10087,7 @@ struct llm_build_gemma3n_iswa : public llm_graph_context { cb(Qcur, "Qcur_pos", il); cb(Kcur, "Kcur_pos", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il); } else { @@ -10012,7 +10105,7 @@ struct llm_build_gemma3n_iswa : public llm_graph_context { ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur_pos", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il); } @@ -10306,7 +10399,7 @@ struct llm_build_gemma3n_iswa : public llm_graph_context { // TODO: move up next to build_starcoder struct llm_build_starcoder2 : public llm_graph_context { - llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_starcoder2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -10377,7 +10470,7 @@ struct llm_build_starcoder2 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -10438,7 +10531,6 @@ struct llm_graph_context_mamba : public llm_graph_context { ggml_tensor * build_mamba_layer( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, @@ -10463,13 +10555,13 @@ struct llm_graph_context_mamba : public llm_graph_context { const int64_t n_seq_tokens = ubatch.n_seq_tokens; GGML_ASSERT(n_seqs != 0); - GGML_ASSERT(ubatch.equal_seqs); + GGML_ASSERT(ubatch.equal_seqs()); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); - ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs); + ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} @@ -10550,7 +10642,7 @@ struct llm_graph_context_mamba : public llm_graph_context { return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids); }; - ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); + ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); // store last states ggml_build_forward_expand(gf, @@ -10577,11 +10669,10 @@ struct llm_graph_context_mamba : public llm_graph_context { ggml_tensor * build_mamba2_layer( llm_graph_input_rs * inp, - ggml_cgraph * gf, - ggml_tensor * cur, - const llama_model & model, - const llama_ubatch & ubatch, - int il) const { + ggml_tensor * cur, + const llama_model & model, + const llama_ubatch & ubatch, + int il) const { const auto * mctx_cur = inp->mctx; @@ -10598,13 +10689,13 @@ struct llm_graph_context_mamba : public llm_graph_context { const int64_t n_seq_tokens = ubatch.n_seq_tokens; GGML_ASSERT(n_seqs != 0); - GGML_ASSERT(ubatch.equal_seqs); + GGML_ASSERT(ubatch.equal_seqs()); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); - ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs); + ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} @@ -10674,7 +10765,7 @@ struct llm_graph_context_mamba : public llm_graph_context { return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids); }; - ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); + ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); // store last states ggml_build_forward_expand(gf, @@ -10710,7 +10801,7 @@ struct llm_graph_context_mamba : public llm_graph_context { }; struct llm_build_mamba : public llm_graph_context_mamba { - llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) { + llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { ggml_tensor * cur; ggml_tensor * inpL; @@ -10729,9 +10820,9 @@ struct llm_build_mamba : public llm_graph_context_mamba { cb(cur, "attn_norm", il); if (model.arch == LLM_ARCH_MAMBA2) { - cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il); + cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il); } else { - cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il); + cur = build_mamba_layer(rs_inp, cur, model, ubatch, il); } if (il == n_layer - 1 && inp_out_ids) { @@ -10767,7 +10858,7 @@ struct llm_build_mamba : public llm_graph_context_mamba { }; struct llm_build_jamba : public llm_graph_context_mamba { - llm_build_jamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) { + llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; ggml_tensor * cur; @@ -10787,7 +10878,7 @@ struct llm_build_jamba : public llm_graph_context_mamba { cb(cur, "attn_norm", il); if (n_head_kv == 0) { - cur = build_mamba_layer(inp_hybrid->get_recr(), gf, cur, model, ubatch, il); + cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il); } else { // Attention @@ -10808,7 +10899,7 @@ struct llm_build_jamba : public llm_graph_context_mamba { cb(Vcur, "Vcur", il); // No RoPE :) - cur = build_attn(inp_hybrid->get_attn(), gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il); + cur = build_attn(inp_hybrid->get_attn(), model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1 && inp_out_ids) { @@ -10876,7 +10967,7 @@ struct llm_build_jamba : public llm_graph_context_mamba { }; struct llm_build_command_r : public llm_graph_context { - llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_command_r(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -10964,7 +11055,7 @@ struct llm_build_command_r : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11023,7 +11114,7 @@ struct llm_build_command_r : public llm_graph_context { }; struct llm_build_cohere2_iswa : public llm_graph_context { - llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11099,7 +11190,7 @@ struct llm_build_cohere2_iswa : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11159,7 +11250,7 @@ struct llm_build_cohere2_iswa : public llm_graph_context { // * removed bias // * removed MoE struct llm_build_olmo : public llm_graph_context { - llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_olmo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11230,7 +11321,7 @@ struct llm_build_olmo : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11287,7 +11378,7 @@ struct llm_build_olmo : public llm_graph_context { }; struct llm_build_olmo2 : public llm_graph_context { - llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11350,7 +11441,7 @@ struct llm_build_olmo2 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11416,7 +11507,7 @@ struct llm_build_olmo2 : public llm_graph_context { // * removed bias // * added q, k norm struct llm_build_olmoe : public llm_graph_context { - llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11483,7 +11574,7 @@ struct llm_build_olmoe : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11544,7 +11635,7 @@ struct llm_build_olmoe : public llm_graph_context { }; struct llm_build_openelm : public llm_graph_context { - llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11616,7 +11707,7 @@ struct llm_build_openelm : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Qcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11673,7 +11764,7 @@ struct llm_build_openelm : public llm_graph_context { }; struct llm_build_gptneox : public llm_graph_context { - llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -11728,7 +11819,7 @@ struct llm_build_gptneox : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11819,7 +11910,7 @@ struct llm_build_gptneox : public llm_graph_context { }; struct llm_build_arctic : public llm_graph_context { - llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -11878,7 +11969,7 @@ struct llm_build_arctic : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -11957,7 +12048,7 @@ struct llm_build_arctic : public llm_graph_context { }; struct llm_build_deepseek : public llm_graph_context { - llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_deepseek(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -12033,7 +12124,7 @@ struct llm_build_deepseek : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } @@ -12119,7 +12210,7 @@ struct llm_build_deepseek : public llm_graph_context { }; struct llm_build_deepseek2 : public llm_graph_context { - llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { bool is_lite = (hparams.n_layer == 27); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); @@ -12261,7 +12352,7 @@ struct llm_build_deepseek2 : public llm_graph_context { cb(Vcur, "Vcur", il); // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group) - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il); } else { @@ -12295,7 +12386,7 @@ struct llm_build_deepseek2 : public llm_graph_context { cb(Kcur, "Kcur", il); // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups) - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } @@ -12382,7 +12473,7 @@ struct llm_build_deepseek2 : public llm_graph_context { }; struct llm_build_bitnet : public llm_graph_context { - llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -12462,7 +12553,7 @@ struct llm_build_bitnet : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, NULL, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); @@ -12542,7 +12633,7 @@ struct llm_build_bitnet : public llm_graph_context { }; struct llm_build_t5_enc : public llm_graph_context { - llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -12585,7 +12676,7 @@ struct llm_build_t5_enc : public llm_graph_context { ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo_enc, nullptr, Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il); cb(cur, "kqv_out", il); @@ -12643,7 +12734,7 @@ struct llm_build_t5_enc : public llm_graph_context { }; struct llm_build_t5_dec : public llm_graph_context { - llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; //const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -12691,7 +12782,7 @@ struct llm_build_t5_dec : public llm_graph_context { ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b); - cur = build_attn(inp_attn_self, gf, + cur = build_attn(inp_attn_self, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il); cb(cur, "kqv_out", il); @@ -12723,7 +12814,7 @@ struct llm_build_t5_dec : public llm_graph_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc); - cur = build_attn(inp_attn_cross, gf, + cur = build_attn(inp_attn_cross, model.layers[il].wo_cross, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); cb(cur, "kqv_out", il); @@ -12813,7 +12904,7 @@ struct llm_build_t5_dec : public llm_graph_context { }; struct llm_build_jais : public llm_graph_context { - llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_jais(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -12855,7 +12946,7 @@ struct llm_build_jais : public llm_graph_context { Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il); } @@ -12908,7 +12999,7 @@ struct llm_build_jais : public llm_graph_context { }; struct llm_build_chatglm : public llm_graph_context { - llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -12987,7 +13078,7 @@ struct llm_build_chatglm : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -13041,7 +13132,7 @@ struct llm_build_chatglm : public llm_graph_context { }; struct llm_build_glm4 : public llm_graph_context { - llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); @@ -13120,7 +13211,7 @@ struct llm_build_glm4 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -13192,7 +13283,7 @@ struct llm_build_glm4 : public llm_graph_context { }; struct llm_build_nemotron : public llm_graph_context { - llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -13264,7 +13355,7 @@ struct llm_build_nemotron : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -13321,7 +13412,7 @@ struct llm_build_nemotron : public llm_graph_context { }; struct llm_build_exaone : public llm_graph_context { - llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -13395,7 +13486,7 @@ struct llm_build_exaone : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -13451,6 +13542,142 @@ struct llm_build_exaone : public llm_graph_context { } }; +template +struct llm_build_exaone4 : public llm_graph_context { + llm_build_exaone4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { + const int64_t n_embd_head = hparams.n_embd_head_k; + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_v); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + using inp_attn_type = std::conditional_t; + inp_attn_type * inp_attn = nullptr; + + if constexpr (iswa) { + inp_attn = build_attn_inp_kv_unified_iswa(); + } else { + inp_attn = build_attn_inp_kv_unified(); + } + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * inpSA = inpL; + + // use RoPE for SWA layers or non-SWA models + const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE; + + cur = inpL; + + // self-attention + { + ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); + + ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); + Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); + cb(Qcur, "Qcur_normed", il); + cb(Kcur, "Kcur_normed", il); + + if (use_rope) { + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + } + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, + model.layers[il].wo, NULL, + Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); + cb(cur, "attn_out", il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + cur = build_norm(cur, + model.layers[il].attn_post_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_post_norm", il); + + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = build_ffn(ffn_inp, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + + cur = build_norm(cur, + model.layers[il].ffn_post_norm, NULL, + LLM_NORM_RMS, -1); + cb(cur, "ffn_post_norm", -1); + + cur = ggml_add(ctx0, cur, ffn_inp); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } +}; + struct llm_build_rwkv6_base : public llm_graph_context { const llama_model & model; @@ -13488,7 +13715,6 @@ struct llm_build_rwkv6_base : public llm_graph_context { ggml_tensor * build_rwkv6_time_mix( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, const llama_ubatch & ubatch, @@ -13615,7 +13841,7 @@ struct llm_build_rwkv6_base : public llm_graph_context { } ggml_tensor * wkv_state = build_rs( - inp, gf, mctx_cur->get_s_l(il), + inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs); ggml_tensor * wkv_output; @@ -13661,7 +13887,7 @@ struct llm_build_rwkv6_base : public llm_graph_context { }; struct llm_build_rwkv6 : public llm_build_rwkv6_base { - llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) { + llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) { GGML_ASSERT(hparams.token_shift_count == 2); ggml_tensor * cur; @@ -13682,7 +13908,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); @@ -13697,7 +13923,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { 1 ); - cur = build_rwkv6_time_mix(rs_inp, gf, att_norm, x_prev, ubatch, il); + cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -13762,7 +13988,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base { // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { - llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) { + llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) { GGML_ASSERT(n_embd == hparams.n_embd_r()); ggml_tensor * cur; @@ -13782,7 +14008,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); @@ -13794,7 +14020,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { 1 ); - cur = build_rwkv6_time_mix(rs_inp, gf, att_norm, x_prev, ubatch, il); + cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); @@ -13884,7 +14110,6 @@ struct llm_build_rwkv7_base : public llm_graph_context { ggml_tensor * build_rwkv7_time_mix( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, ggml_tensor *& first_layer_value, @@ -13970,7 +14195,7 @@ struct llm_build_rwkv7_base : public llm_graph_context { a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens); ggml_tensor * wkv_state = build_rs( - inp, gf, mctx_cur->get_s_l(il), + inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs); ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state); @@ -14017,7 +14242,7 @@ struct llm_build_rwkv7_base : public llm_graph_context { }; struct llm_build_rwkv7 : public llm_build_rwkv7_base { - llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) { + llm_build_rwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) { GGML_ASSERT(hparams.token_shift_count == 2); ggml_tensor * cur; @@ -14039,7 +14264,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); @@ -14054,7 +14279,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { 1 ); - cur = build_rwkv7_time_mix(rs_inp, gf, att_norm, x_prev, v_first, ubatch, il); + cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); @@ -14113,7 +14338,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base { struct llm_build_arwkv7 : public llm_build_rwkv7_base { - llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) { + llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) { GGML_ASSERT(n_embd == hparams.n_embd_r()); ggml_tensor * cur; @@ -14134,7 +14359,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); - ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, gf, ubatch, il); + ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); @@ -14146,7 +14371,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { 1 ); - cur = build_rwkv7_time_mix(rs_inp, gf, att_norm, x_prev, v_first, ubatch, il); + cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); @@ -14203,8 +14428,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base { struct llm_build_granite : public llm_graph_context { llm_build_granite( const llama_model & model, - const llm_graph_params & params, - ggml_cgraph * gf) + const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; @@ -14238,7 +14462,7 @@ struct llm_build_granite : public llm_graph_context { // self-attention cur = build_attention_layer( - gf, cur, inp_pos, inp_attn, + cur, inp_pos, inp_attn, model, n_embd_head, il); if (il == n_layer - 1 && inp_out_ids) { @@ -14274,7 +14498,6 @@ struct llm_build_granite : public llm_graph_context { } ggml_tensor * build_attention_layer( - ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv_unified * inp_attn, @@ -14329,7 +14552,7 @@ struct llm_build_granite : public llm_graph_context { cb(Vcur, "Vcur", il); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -14417,11 +14640,9 @@ struct llm_build_granite : public llm_graph_context { }; struct llm_build_granite_hybrid : public llm_graph_context_mamba { - llm_build_granite_hybrid( const llama_model & model, - const llm_graph_params & params, - ggml_cgraph * gf) : + const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; @@ -14453,11 +14674,11 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba { if (hparams.is_recurrent(il)) { // ssm layer // - cur = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il); + cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); } else { // attention layer // cur = build_attention_layer( - gf, cur, inp_pos, inp->get_attn(), model, + cur, inp_pos, inp->get_attn(), model, n_embd_head, il); } @@ -14496,7 +14717,6 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba { } ggml_tensor * build_attention_layer( - ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv_unified * inp_attn, @@ -14551,7 +14771,7 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba { cb(Vcur, "Vcur", il); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -14645,7 +14865,7 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba { // * removed bias // * removed MoE struct llm_build_chameleon : public llm_graph_context { - llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -14736,7 +14956,7 @@ struct llm_build_chameleon : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -14822,7 +15042,7 @@ struct llm_build_chameleon : public llm_graph_context { }; struct llm_build_wavtokenizer_dec : public llm_graph_context { - llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { ggml_tensor * cur; ggml_tensor * inpL; @@ -14974,7 +15194,7 @@ struct llm_build_wavtokenizer_dec : public llm_graph_context { }; struct llm_build_plm : public llm_graph_context { - llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k)); const uint32_t n_embd_head_qk_rope = hparams.n_rot; @@ -15092,7 +15312,7 @@ struct llm_build_plm : public llm_graph_context { ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); cb(k_states, "k_states", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, q_states, k_states, v_states, nullptr, nullptr, kq_scale, il); } @@ -15146,7 +15366,7 @@ struct llm_build_plm : public llm_graph_context { }; struct llm_build_bailingmoe : public llm_graph_context { - llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { ggml_tensor * cur; ggml_tensor * inpL; @@ -15215,7 +15435,7 @@ struct llm_build_bailingmoe : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il); } @@ -15290,7 +15510,7 @@ struct llm_build_bailingmoe : public llm_graph_context { }; struct llm_build_dots1 : public llm_graph_context { - llm_build_dots1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -15355,7 +15575,7 @@ struct llm_build_dots1 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -15440,7 +15660,7 @@ struct llm_build_dots1 : public llm_graph_context { }; struct llm_build_ernie4_5 : public llm_graph_context { - llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -15510,7 +15730,7 @@ struct llm_build_ernie4_5 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } @@ -15569,8 +15789,178 @@ struct llm_build_ernie4_5 : public llm_graph_context { } }; +struct llm_build_ernie4_5_moe : public llm_graph_context { + llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { + const int64_t n_embd_head = hparams.n_embd_head_v; + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + auto * inp_attn = build_attn_inp_kv_unified(); + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0"); + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * inpSA = inpL; + // norm + { + cur = build_norm(inpL, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + } + + // self-attention + { + // compute Q and K and RoPE them + ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, + model.layers[il].wo, NULL, + Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); + cb(cur, "attn_out", il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + bool is_moe_layer = static_cast(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0; + + if (!is_moe_layer) { + cur = build_norm(ffn_inp, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + cur = build_ffn(cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + // MoE branch + cur = build_norm(ffn_inp, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + ggml_tensor * moe_out = build_moe_ffn(cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + model.layers[il].ffn_exp_probs_b, + n_expert, n_expert_used, + LLM_FFN_SILU, true, + false, 0.0, + LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, + il); + cb(moe_out, "ffn_moe_out", il); + + // Shared expert (if present) + if (hparams.n_ff_shexp > 0) { + ggml_tensor * ffn_shexp = build_ffn(cur, + model.layers[il].ffn_up_shexp, NULL, NULL, + model.layers[il].ffn_gate_shexp, NULL, NULL, + model.layers[il].ffn_down_shexp, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + } else { + cur = moe_out; + } + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } +}; + struct llm_build_falcon_h1 : public llm_graph_context_mamba { - llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) { + llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; ggml_tensor * cur; @@ -15626,7 +16016,7 @@ struct llm_build_falcon_h1 : public llm_graph_context_mamba { cb(Kcur, "Kcur-post-rope", il); cb(Vcur, "Vcur-post-rope", il); - ggml_tensor * attn_out = build_attn(inp->get_attn(), gf, + ggml_tensor * attn_out = build_attn(inp->get_attn(), model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(attn_out, "attn_out", il); @@ -15637,7 +16027,7 @@ struct llm_build_falcon_h1 : public llm_graph_context_mamba { // Mamba2 layer cb(cur, "ssm_in", il); - ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il); + ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); cb(ssm_out, "ssm_out", il); // // Aggregation @@ -15696,7 +16086,7 @@ struct llm_build_falcon_h1 : public llm_graph_context_mamba { }; struct llm_build_plamo2 : public llm_graph_context_mamba { - llm_build_plamo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) { + llm_build_plamo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { ggml_tensor * cur; ggml_tensor * inpL; @@ -15724,10 +16114,10 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { if (is_mamba_layer) { // PLaMo-2 Mamba layer - cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), gf, cur, model, ubatch, il); + cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il); } else { // PLaMo-2 Attention layer - cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, gf, cur, model, il); + cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il); } // post_mixer_norm @@ -15790,7 +16180,6 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { ggml_tensor * build_plamo2_attn_layer( llm_graph_input_attn_kv_unified * inp, ggml_tensor * inp_pos, - ggml_cgraph * gf, ggml_tensor * cur, const llama_model & model, int il) { @@ -15839,7 +16228,7 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { ext_factor, attn_factor, beta_fast, beta_slow ); - cur = build_attn(inp, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f, il); + cur = build_attn(inp, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f, il); } cb(cur, "attn_out", il); @@ -15849,7 +16238,6 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { ggml_tensor * build_plamo2_mamba_layer( llm_graph_input_rs * inp, - ggml_cgraph * gf, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, @@ -15870,13 +16258,13 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { const int64_t n_seq_tokens = ubatch.n_seq_tokens; GGML_ASSERT(n_seqs != 0); - GGML_ASSERT(ubatch.equal_seqs); + GGML_ASSERT(ubatch.equal_seqs()); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); - ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs); + ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} @@ -15973,7 +16361,7 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids); }; - ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); + ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows); cb(y_ssm, "mamba_ssm_scan", il); // store last states @@ -16010,7 +16398,7 @@ struct llm_build_plamo2 : public llm_graph_context_mamba { }; struct llm_build_arcee : public llm_graph_context { - llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -16086,7 +16474,7 @@ struct llm_build_arcee : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -16145,7 +16533,7 @@ struct llm_build_arcee : public llm_graph_context { }; struct llm_build_hunyuan_moe : public llm_graph_context { - llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -16231,7 +16619,7 @@ struct llm_build_hunyuan_moe : public llm_graph_context { LLM_NORM_RMS, il); cb(Qcur, "Qcur_norm", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -16306,7 +16694,7 @@ struct llm_build_hunyuan_moe : public llm_graph_context { }; struct llm_build_smollm3 : public llm_graph_context { - llm_build_smollm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { + llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); @@ -16383,7 +16771,7 @@ struct llm_build_smollm3 : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - cur = build_attn(inp_attn, gf, + cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); @@ -16445,7 +16833,7 @@ struct llm_build_smollm3 : public llm_graph_context { struct llm_build_lfm2 : public llm_graph_context { const llama_model & model; - llm_build_lfm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) { + llm_build_lfm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) { ggml_tensor * cur = build_inp_embd(model.tok_embd); cb(cur, "model.embed_tokens", -1); @@ -16460,8 +16848,8 @@ struct llm_build_lfm2 : public llm_graph_context { cb(cur, "model.layers.{}.operator_norm", il); cur = hparams.is_recurrent(il) ? - build_shortconv_block(gf, cur, inp_hybrid->get_recr(), il) : - build_attn_block(gf, cur, inp_pos, inp_hybrid->get_attn(), il) ; + build_shortconv_block(cur, inp_hybrid->get_recr(), il) : + build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il) ; if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); @@ -16504,8 +16892,7 @@ struct llm_build_lfm2 : public llm_graph_context { return cur; } - ggml_tensor * build_attn_block(ggml_cgraph * gf, - ggml_tensor * cur, + ggml_tensor * build_attn_block(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv_unified * inp_attn, int il) const { @@ -16542,7 +16929,7 @@ struct llm_build_lfm2 : public llm_graph_context { ext_factor, attn_factor, beta_fast, beta_slow ); - cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, + cur = build_attn(inp_attn, model.layers[il].wo, NULL, q, k, v, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cb(cur, "model.layers.{}.self_attn.out_proj", il); @@ -16550,11 +16937,22 @@ struct llm_build_lfm2 : public llm_graph_context { return cur; } - ggml_tensor * build_shortconv_block(ggml_cgraph * gf, - ggml_tensor * cur, + ggml_tensor * build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) { - const auto * mctx_cur = static_cast(mctx)->get_recr(); + const auto * mctx_cur = static_cast(mctx)->get_recr(); + const uint32_t kv_head = mctx_cur->get_head(); + const int64_t n_seq_tokens = ubatch.n_seq_tokens; + const int64_t n_seqs = ubatch.n_seqs; + GGML_ASSERT(n_seqs != 0); + GGML_ASSERT(ubatch.equal_seqs()); + GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); + + GGML_ASSERT(hparams.n_shortconv_l_cache > 1); + const uint32_t d_conv = hparams.n_shortconv_l_cache - 1; + + // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} + cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur); cb(bcx, "model.layers.{}.conv.in_proj", il); @@ -16562,38 +16960,48 @@ struct llm_build_lfm2 : public llm_graph_context { constexpr auto n_chunks = 3; GGML_ASSERT(bcx->ne[0] % n_chunks == 0); auto const chunk_size = bcx->ne[0] / n_chunks; - auto * b = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 0 * chunk_size * ggml_element_size(bcx)); - auto * c = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 1 * chunk_size * ggml_element_size(bcx)); - auto * x = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 2 * chunk_size * ggml_element_size(bcx)); + auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 0*chunk_size*ggml_element_size(bcx)); + auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 1*chunk_size*ggml_element_size(bcx)); + auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 2*chunk_size*ggml_element_size(bcx)); auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x)); - // read conv state directly, with build_rs generation is slower - ggml_tensor * conv_state = mctx_cur->get_r_l(il); - const int64_t n_seqs = ubatch.n_seqs; - ggml_tensor * conv = build_rs(inp_recr, gf, conv_state, hparams.n_embd_r(), n_seqs); - conv = ggml_reshape_3d(ctx0, conv_state, hparams.n_shortconv_l_cache - 1, hparams.n_embd, n_seqs); + // read conv state + auto * conv_state = mctx_cur->get_r_l(il); + auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs); + auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs); bx = ggml_concat(ctx0, conv, bx, 0); GGML_ASSERT(bx->ne[0] > conv->ne[0]); - auto * new_conv = ggml_view_2d(ctx0, bx, conv->ne[0], bx->ne[1], bx->nb[1], (bx->ne[0] - conv->ne[0]) * ggml_element_size(bx)); + // last d_conv columns is a new conv state + auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2], (bx->ne[0] - conv->ne[0])*ggml_element_size(bx)); GGML_ASSERT(ggml_are_same_shape(conv, new_conv)); - // write conv state - ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv, conv_state)); + // write new conv conv state + ggml_build_forward_expand( + gf, + ggml_cpy( + ctx0, + new_conv, + ggml_view_1d( + ctx0, + conv_state, + ggml_nelements(new_conv), + kv_head*d_conv*n_embd*ggml_element_size(new_conv) + ) + ) + ); auto * conv_kernel = model.layers[il].shortconv.conv; - GGML_ASSERT(hparams.n_shortconv_l_cache > 0); - - // construct ssm_conv op - ggml_tensor * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel); + auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel); cb(conv_out, "model.layers.{}.conv.conv", il); auto * y = ggml_mul(ctx0, c, conv_out); - y = build_lora_mm(model.layers[il].shortconv.out_proj, y); cb(y, "model.layers.{}.conv.out_proj", il); + // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens} + y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs); return y; } @@ -16706,236 +17114,233 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, return res; } -llm_graph_result_ptr llama_model::build_graph( - const llm_graph_params & params, - ggml_cgraph * gf, - llm_graph_type type) const { +ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { std::unique_ptr llm; switch (arch) { case LLM_ARCH_LLAMA: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_LLAMA4: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DECI: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_BAICHUAN: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_FALCON: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GROK: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_STARCODER: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_REFACT: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_NOMIC_BERT_MOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_NEO_BERT: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_BLOOM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_MPT: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_STABLELM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DREAM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2VL: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN2MOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_QWEN3MOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_PHI2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_PHI3: case LLM_ARCH_PHIMOE: { if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { - llm = std::make_unique> (*this, params, gf); + llm = std::make_unique> (*this, params); } else { - llm = std::make_unique>(*this, params, gf); + llm = std::make_unique>(*this, params); } } break; case LLM_ARCH_PLAMO: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_PLAMO2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GPT2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_CODESHELL: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_ORION: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_INTERNLM2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_MINICPM3: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA3: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GEMMA3N: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_STARCODER2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_MAMBA: case LLM_ARCH_MAMBA2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_JAMBA: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_XVERSE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_COMMAND_R: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_COHERE2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DBRX: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_OLMO: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_OLMO2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_OLMOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_OPENELM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GPTNEOX: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARCTIC: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DEEPSEEK: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DEEPSEEK2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_CHATGLM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GLM4: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_BITNET: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_T5: { - switch (type) { + switch (params.gtype) { case LLM_GRAPH_TYPE_ENCODER: - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); break; case LLM_GRAPH_TYPE_DEFAULT: case LLM_GRAPH_TYPE_DECODER: - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); break; default: GGML_ABORT("invalid graph type"); @@ -16943,99 +17348,111 @@ llm_graph_result_ptr llama_model::build_graph( } break; case LLM_ARCH_T5ENCODER: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_JAIS: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_NEMOTRON: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_EXAONE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); + } break; + case LLM_ARCH_EXAONE4: + { + if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) { + llm = std::make_unique>(*this, params); + } else { + llm = std::make_unique>(*this, params); + } } break; case LLM_ARCH_RWKV6: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_RWKV6QWEN2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_RWKV7: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARWKV7: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: case LLM_ARCH_MINICPM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_GRANITE_HYBRID: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_CHAMELEON: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_WAVTOKENIZER_DEC: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_PLM: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_BAILINGMOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_DOTS1: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_ARCEE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_ERNIE4_5: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); + } break; + case LLM_ARCH_ERNIE4_5_MOE: + { + llm = std::make_unique(*this, params); } break; case LLM_ARCH_HUNYUAN_MOE: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_SMOLLM3: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_FALCON_H1: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; case LLM_ARCH_LFM2: { - llm = std::make_unique(*this, params, gf); + llm = std::make_unique(*this, params); } break; default: GGML_ABORT("fatal error"); } // add on pooling layer - llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b); + llm->build_pooling(cls, cls_b, cls_out, cls_out_b); - return std::move(llm->res); + return llm->res->get_gf(); } // @@ -17184,6 +17601,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_SMOLLM3: case LLM_ARCH_ARCEE: case LLM_ARCH_ERNIE4_5: + case LLM_ARCH_ERNIE4_5_MOE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 @@ -17220,6 +17638,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_ORION: case LLM_ARCH_NEMOTRON: case LLM_ARCH_EXAONE: + case LLM_ARCH_EXAONE4: case LLM_ARCH_MINICPM3: case LLM_ARCH_DOTS1: case LLM_ARCH_HUNYUAN_MOE: diff --git a/src/llama-model.h b/src/llama-model.h index 027a7f0c3..094e23808 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -99,8 +99,10 @@ enum llm_type { LLM_TYPE_17B_16E, // llama4 Scout LLM_TYPE_17B_128E, // llama4 Maverick LLM_TYPE_A13B, + LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, LLM_TYPE_235B_A22B, + LLM_TYPE_300B_A47B, // Ernie MoE big LLM_TYPE_E2B, LLM_TYPE_E4B, }; @@ -452,10 +454,7 @@ struct llama_model { llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const; // TODO: move this to new llm_arch_model_i interface - llm_graph_result_ptr build_graph( - const llm_graph_params & params, - ggml_cgraph * gf, - llm_graph_type type) const; + ggml_cgraph * build_graph(const llm_graph_params & params) const; private: struct impl; diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 2181c01e3..e8bae6450 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1925,6 +1925,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { } else if ( tokenizer_pre == "exaone") { pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE; + } else if ( + tokenizer_pre == "exaone4") { + pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "chameleon") { pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index a3d68fba0..76a546460 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2353,9 +2353,12 @@ struct test_bin_bcast : public test_case { const ggml_type type; const std::array ne; const std::array nr; + int nf; // number of fused ops, nf == 1 -> single op (no fusion) + + bool run_whole_graph() override { return true; } std::string vars() override { - return VARS_TO_STR3(type, ne, nr); + return VARS_TO_STR4(type, ne, nr, nf); } size_t op_size(ggml_tensor * t) override { @@ -2364,24 +2367,35 @@ struct test_bin_bcast : public test_case { test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 1, 1}, - std::array nr = {1, 2, 1, 1}) - : op(op), type(type), ne(ne), nr(nr) {} + std::array nr = {1, 2, 1, 1}, + int nf = 1) + : op(op), type(type), ne(ne), nr(nr), nf(nf) {} ggml_tensor * build_graph(ggml_context * ctx) override { + GGML_ASSERT(nf <= 8); + ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_set_name(a, "a"); - ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_set_name(b, "b"); + ggml_tensor * b[8]; + for (int i = 0; i < nf; ++i) { + b[i] = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str()); + } // The backward pass supports broadcasting only for GGML_ADD: - const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b); + const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1; if (grad_supported) { ggml_set_param(a); - ggml_set_param(b); + ggml_set_param(b[0]); + } + + ggml_tensor * out = a; + + for (int i = 0; i < nf; ++i) { + out = op(ctx, out, b[i]); } - ggml_tensor * out = op(ctx, a, b); ggml_set_name(out, "out"); return out; @@ -2622,39 +2636,46 @@ struct test_rms_norm_back : public test_case { } }; -// GGML_OP_RMS_NORM + GGML_OP_MUL -struct test_rms_norm_mul : public test_case { +// GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD +struct test_rms_norm_mul_add : public test_case { const ggml_type type; const std::array ne; const float eps; + const bool broadcast; std::string op_desc(ggml_tensor * t) override { GGML_UNUSED(t); - return "RMS_NORM_MUL"; + return "RMS_NORM_MUL_ADD"; } bool run_whole_graph() override { return true; } std::string vars() override { - return VARS_TO_STR3(type, ne, eps); + return VARS_TO_STR4(type, ne, eps, broadcast); } - test_rms_norm_mul(ggml_type type = GGML_TYPE_F32, + test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 5, 4, 3}, - float eps = 1e-6f) - : type(type), ne(ne), eps(eps) {} + float eps = 1e-6f, bool broadcast = false) + : type(type), ne(ne), eps(eps), broadcast(broadcast) {} ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + std::array broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4}; + + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data()); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); ggml_set_name(a, "a"); ggml_set_param(b); ggml_set_name(b, "b"); + ggml_set_param(c); + ggml_set_name(c, "c"); - // Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul - a = ggml_add(ctx, a, b); - ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b); + // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul + a = ggml_add(ctx, ggml_add(ctx, a, b), c); + ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c); ggml_set_name(out, "out"); return out; @@ -3682,6 +3703,93 @@ struct test_im2col : public test_case { } }; +// CONV_2D +struct test_conv_2d : public test_case { + const std::array ne_input; + const std::array ne_kernel; + const int stride0; + const int stride1; + const int padding0; + const int padding1; + const int dilation0; + const int dilation1; + // Whether the inputs are contiguous in the channel dim or the width dim + const bool cwhn; + + // If true, the direct CONV_2D will be used in the graph, otherwise it + // uses ggml_conv_2d: + // * if the program is called with -o CONV_2D_DIRECT_IMPL, the + // CONV_2D graph will be built, while + // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the + // IM2COL -> MUL_MM graph will be built. + + std::string vars() override { + return VARS_TO_STR9(ne_input, ne_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn); + } + + uint64_t op_flops(ggml_tensor * t) override { + GGML_UNUSED(t); + // Just counting matmul costs: + // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops + + // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) + auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; + }; + + int64_t W = ne_input[0]; + int64_t H = ne_input[1]; + int64_t KW = ne_kernel[0]; + int64_t KH = ne_kernel[1]; + int64_t Cin = ne_kernel[2]; + int64_t Cout = ne_kernel[3]; + int64_t N = ne_input[3]; + int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0); + int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0); + + int64_t K = Cout; + int64_t CRS = Cin * KH * KW; + int64_t NPQ = N * OH * OW; + + return K * NPQ * (2 * CRS - 1); + } + + test_conv_2d(std::array ne_input = { 64, 64, 16, 1 }, + std::array ne_kernel = { 3, 3, 1, 16 }, int stride0 = 1, int stride1 = 1, int padding0 = 0, + int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) : + ne_input(ne_input), + ne_kernel(ne_kernel), + stride0(stride0), + stride1(stride1), + padding0(padding0), + padding1(padding1), + dilation0(dilation0), + dilation1(dilation1), + cwhn(cwhn) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data()); + ggml_set_name(input, "input"); + + ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data()); + ggml_set_name(kernel, "kernel"); + + if (cwhn) { + // change memory layout to channel-most-contiguous (CWHN), + // then permute it back so NE matches the original input + input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3)); + input = ggml_permute(ctx, input, 2, 0, 1, 3); + kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0)); + kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1); + } + + ggml_tensor * out = + ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1); + ggml_set_name(out, "out"); + return out; + } +}; + // GGML_OP_CONV_2D_DW struct test_conv_2d_dw : public test_case { const std::array ne_input; @@ -4258,26 +4366,32 @@ struct test_flash_attn_ext : public test_case { const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV)); const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV)); - auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * { + auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * { int64_t ne[4] = {ne0, ne1, ne2, ne3}; int64_t ne_perm[4]; for (int i = 0; i < 4; ++i) { ne_perm[permute[i]] = ne[i]; } - ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]); + ggml_tensor * t; + if (is_view) { + ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]); + t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0); + } else { + t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]); + } if (permute != std::array{0, 1, 2, 3}) { t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]); } return t; }; - ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]); + ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false); ggml_set_name(q, "q"); - ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]); + ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache ggml_set_name(k, "k"); - ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]); + ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache ggml_set_name(v, "v"); ggml_tensor * m = nullptr; @@ -4989,6 +5103,81 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true)); + test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true)); + +// Conv_2D test cases +#ifdef DETAILED_TESTS + // Probably we do not have enough time to execute these in the pipeline. + uint32_t iwh_idx = 0; + uint32_t kwh_idx = 1; + uint32_t Cout_idx = 2; + uint32_t Cin_idx = 3; + uint32_t B_idx = 4; + + std::vector> cases = { + //{IWH, KWH, Cout, Cin, B} + // K=CRS=NPQ=4096 conv_2d matmul performance + {19, 4, 4096, 256, 16}, + // K=128, CRS=128, NPQ=4096 + { 19, 4, 128, 8, 16}, + // K=130, CRS=128, NPQ=4096 + { 19, 4, 130, 8, 16}, + // Edge case: K x CRS is small + { 19, 2, 4, 4, 16}, + // A ConvNet's first layer + { 224, 3, 8, 3, 1 }, + // A ConvNet's first layer with 2x2 convolution, and 1 channel + { 224, 2, 8, 1, 1 }, + // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch + { 224, 2, 8, 1, 8 }, + // A middle layer of a ConvNet + { 58, 3, 64, 32, 1 }, + // A middle layer of a ConvNet, several images in the batch + { 58, 3, 64, 32, 8 }, + // A deep layer of a ConvNet, several images in the batch + { 16, 3, 256, 128, 8 } + }; + + for (auto act_case : cases) { + test_cases.emplace_back(new test_conv_2d( + { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] }, + { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, 1, 1, 0, 0, 1, 1, false)); + } +#endif + + // CONV_2D: + auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; + }; + + //uint32_t s0 = 3; + uint32_t s1 = 5; + uint32_t p0 = 5; + //uint32_t p1 = 2; + uint32_t d0 = 2; + uint32_t d1 = 4; + + for (uint32_t s0 : { 1, 3 }) { + for (uint32_t p1 : { 2, 5 }) { + for (uint32_t Cin : { 1, 25 }) { + for (uint32_t Cout : { 1, 12 }) { + for (uint32_t KH : { 1, 2, 3, 11 }) { + for (uint32_t KW : { 1, 2, 3, 11 }) { + for (uint32_t H : { 1, 133 }) { + for (uint32_t W : { 1, 141 }) { + if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 && + calc_conv_output_size(H, KH, s1, p1, d1) > 0) { + test_cases.emplace_back(new test_conv_2d( + { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, s0, s1, p0, p1, d0, d1, false)); + } + } + } + } + } + } + } + } + } // sycl backend will limit task global_range < MAX_INT // test cases for 2D im2col with large input W and H (occurs in stable-diffusion) @@ -5151,6 +5340,15 @@ static std::vector> make_test_cases_eval() { //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1}); } + // fusion + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7)); + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8)); + test_cases.emplace_back(new test_add1()); test_cases.emplace_back(new test_scale()); test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f)); @@ -5165,7 +5363,8 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps)); } for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) { - test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); + test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); + test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true)); } test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f)); @@ -5584,6 +5783,43 @@ static std::vector> make_test_cases_eval() { static std::vector> make_test_cases_perf() { std::vector> test_cases; + // Conv2d: K=CRS=NPQ=4096 matmul performance + uint32_t iwh_idx = 0; + uint32_t kwh_idx = 1; + uint32_t Cout_idx = 2; + uint32_t Cin_idx = 3; + uint32_t B_idx = 4; + std::vector> cases = { + //{IWH, KWH, Cout, Cin, B} + // K=CRS=NPQ=4096 conv2d matmul performance + {19, 4, 4096, 256, 16}, + // K=128, CRS=128, NPQ=4096 + { 19, 4, 128, 8, 16}, + // K=130, CRS=128, NPQ=4096 + { 19, 4, 130, 8, 16}, + // Edge case: K x CRS is small + { 19, 2, 4, 4, 16}, + // A ConvNet's first layer + { 224, 3, 8, 3, 1 }, + // A ConvNet's first layer with 2x2 convolution, and 1 channel + { 224, 2, 8, 1, 1 }, + // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch + { 224, 2, 8, 1, 8 }, + // A middle layer of a ConvNet + { 58, 3, 64, 32, 1 }, + // A middle layer of a ConvNet, several images in the batch + { 58, 3, 64, 32, 8 }, + // A deep layer of a ConvNet, several images in the batch + { 16, 3, 512, 128, 8 }, + }; + + for (auto act_case : cases) { + // Direct CONV_2D + test_cases.emplace_back(new test_conv_2d( + { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] }, + { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, 1, 1, 0, 0, 1, 1, false)); + } + test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1})); test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1})); diff --git a/tools/imatrix/README.md b/tools/imatrix/README.md index 6d8897d98..7417a2dec 100644 --- a/tools/imatrix/README.md +++ b/tools/imatrix/README.md @@ -1,33 +1,92 @@ # llama.cpp/tools/imatrix Compute an importance matrix for a model and given text dataset. Can be used during quantization to enhance the quality of the quantized models. -More information is available here: https://github.com/ggml-org/llama.cpp/pull/4861 +More information is available in . ## Usage ``` ./llama-imatrix \ - -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \ - [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \ - [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...] + -m model.gguf -f some-text.txt [-o imatrix.gguf] [--no-ppl] \ + [--process-output] [--chunk 123] [--save-frequency 0] [--output-frequency 10] \ + [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] [--parse-special] \ + [--show-statistics] [...] ``` -Here `-m` with a model name and `-f` with a file containing training data (such as e.g. `wiki.train.raw`) are mandatory. +Here `-m | --model` with a model name and `-f | --file` with a file containing calibration data (such as e.g. `wiki.train.raw`) are mandatory. The parameters in square brackets are optional and have the following meaning: -* `-o` (or `--output-file`) specifies the name of the file where the computed data will be stored. If missing `imatrix.dat` is used. -* `--verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`. -* `--output-frequency` specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) + +* `-h | --help` shows usage information and exits. +* `-lv | --verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`. +* `-o | --output-file` specifies the name of the file where the computed data will be stored. If missing `imatrix.gguf` is used. +* `-ofreq | --output-frequency` specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) * `--save-frequency` specifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never) -* `--process-output` specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. +* `--process-output` specifies if data will be collected for the `output.weight` tensor. Typically, it is better not to utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. +* `--in-file` one or more existing imatrix files to load and combine. Useful for merging files from multiple runs/datasets. +* `--parse-special` enables parsing of special tokens (e.g., `<|im_start|>` in some models). Useful for models with custom tokenizers. +* `--chunk | --from-chunk` to skip the first `n` chunks of tokens from the input data. Useful for resuming or skipping initial low-quality data. +* `--chunks` maximum number of chunks to process. Default is -1 for all available chunks. +* `--no-ppl` disables the calculation of perplexity for the processed chunks. Useful if you want to speed up the processing and do not care about perplexity. +* `--show-statistics` displays imatrix file's statistics. + +For faster computation, make sure to use GPU offloading via the `-ngl | --n-gpu-layers` argument. -For faster computation, make sure to use GPU offloading via the `-ngl` argument +Recent versions of `llama-imatrix` store data in GGUF format by default. For the legacy format, use an extension other than `.gguf` when saving the output file. More information is available in . -## Example +## Examples ```bash -# generate importance matrix (imatrix.dat) -./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99 +# generate importance matrix using default filename (imatrix.gguf), offloading 99 layers to GPU +./llama-imatrix -m ggml-model-f16.gguf -f calibration-data.txt -ngl 99 # use the imatrix to perform a Q4_K_M quantization -./llama-quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m +./llama-quantize --imatrix imatrix.gguf ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m +``` + +```bash +# generate and save the imatrix using legacy format +./llama-imatrix -m ggml-model-f16.gguf -f calibration-data.txt -o imatrix-legcy-format.dat -ngl 99 +``` + +```bash +# covert legacy (binary) imatrix format to new (GGUF) format +./llama-imatrix --in-file imatrix-legacy-format.dat -o imatrix-new-format.gguf +``` + +```bash +# combine existing imatrices +./llama-imatrix --in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf -o imatrix-combined.gguf +``` + +```bash +# skip first 5 chunks, save intermediates every 20 chunks and snapshots every 50, parsing special tokens +./llama-imatrix -m ggml-model-f16.gguf -f calibration-data.txt --chunk 5 --output-frequency 20 --save-frequency 50 --parse-special +``` + +```bash +# analyse imatrix file and display summary statistics instead of running inference +./llama-imatrix --in-file imatrix.gguf --show-statistics ``` + +`--show-statistics` will display the following statistics: + +#### Per tensor + +* Σ(Act²): sum of all squared activations (the importance scores) +* Min & Max: minimum and maximum squared activations values +* μ & σ: Squared activations' mean and standard deviation +* % Active: proportion of elements whose average squared activation exceeds a small threshold (1e-5). Helpful to determine how alive/dormant the tensor is during inference +* N: number of squared activations +* Entropy: entropy of the squared activation distribution, in bits (standard Shannon entropy measurement) $S = -\sum_{i=1}^N p_i \log_2 p_i$ +* E (norm): Normalized entropy. $E(norm)=\frac{-\sum_{i=1}^N p_i \log_2 p_i}{log_2 N}$. These two metrics can be used to determine how well a prompt "exercises" the model's capabilities +* ZD Score: z-score distribution as described in _3.1 Layer Importance Scores_ of [Layer-Wise Quantization](https://arxiv.org/abs/2406.17415) +* CosSim: cosine similarity with respect to the previous layer's tensor. Useful to determine how similar the squared activations of the current layer are to the previous layer's squared activations. + +#### Per layer + +Weighted averages of Σ(Act²), ZD Score and CosSim are also calculated. + +#### Important note on the computed Statistics + +When using these statistics, please note that they are computed on the squared activations, **not on the actual (raw) activations**. +Whilst the results are still useful, they're less realiable than using the raw values, and in the case of the cosine similarity, could be misleading if the tensor contains opposite vectors. diff --git a/tools/imatrix/imatrix.cpp b/tools/imatrix/imatrix.cpp index daad44e59..9aad3711b 100644 --- a/tools/imatrix/imatrix.cpp +++ b/tools/imatrix/imatrix.cpp @@ -2,7 +2,9 @@ #include "common.h" #include "log.h" #include "llama.h" +#include "gguf.h" +#include #include #include #include @@ -13,7 +15,9 @@ #include #include #include -#include +#include +#include +#include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data @@ -22,17 +26,35 @@ static void print_usage(int, char ** argv) { LOG("\nexample usage:\n"); LOG("\n %s \\\n" - " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n" - " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n" - " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...] \\\n" - " [--parse-special]\n" , argv[0]); + " -m model.gguf -f some-text.txt [-o imatrix.gguf] [--no-ppl] \\\n" + " [--process-output] [--chunk 123] [--save-frequency 0] [--output-frequency 10] \\\n" + " [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] [--parse-special] \\\n" + " [--show-statistics] [...]\n" , argv[0]); LOG("\n"); } +static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets"; +static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count"; +static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size"; + struct Stats { - std::vector values; - std::vector counts; - int ncall = 0; + std::vector values; + std::vector counts; +}; + +struct tensor_statistics { + std::string tensor; + Stats stats; + float total_sqract = 0.0f; + float mean_sqract = 0.0f; + float max_sqract = 0.0f; + float min_sqract = 0.0f; + int elements = 0; + float stddev = 0.0f; + float active = 0.0f; + float entropy = 0.0f; + float zd = 0.0f; + float cossim = 0.0f; }; class IMatrixCollector { @@ -40,13 +62,17 @@ class IMatrixCollector { IMatrixCollector() = default; void set_params(common_params params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); - void save_imatrix(int ncall = -1) const; - bool load_imatrix(const char * fname); + void save_imatrix_legacy(int32_t ncall = -1) const; + void save_imatrix(int32_t n_chunk = -1) const; + bool load_imatrix_legacy(const char * fname); + bool load_imatrix(const char * file_name); + const std::unordered_map & get_mstats() const { return m_stats; } private: std::unordered_map m_stats; common_params m_params; std::mutex m_mutex; - int m_last_call = 0; + std::vector m_datasets; + int32_t m_last_chunk = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id }; @@ -70,6 +96,126 @@ static std::string filter_tensor_name(const char * name) { return wname; } +static void process_tensor_name(const std::string & input, std::string & layer, std::string & tensor) { + std::vector name; + std::istringstream stream(input); + std::string item; + + while (std::getline(stream, item, '.')) { + name.push_back(item); + } + for (size_t i = 0; i < name.size(); ++i) { + if (name[i] == "blk" && i + 1 < name.size()) { + layer = name[i + 1]; + break; + } + } + for (size_t i = 0; i < name.size(); ++i) { + if (name[i] == "weight" && i > 0) { + tensor = name[i - 1]; + break; + } + } + + if (tensor.empty()) { + tensor = input; + } + if (layer.empty()) { + layer = "-"; + } +} + +static void compute_statistics(std::vector & tstats, const std::string & name, const Stats & e) { + if (e.values.size() % e.counts.size() != 0) { + LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.values.size()); + return; + } + if (e.counts.empty()) { + LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str()); + return; + } + + const int n_mat = e.counts.size(); + const int row_size = e.values.size() / n_mat; + + std::vector activations; + activations.reserve(e.values.size()); + + for (int i = 0; i < n_mat; ++i) { + for (int j = 0; j < row_size; ++j) { + activations.push_back(e.values[i*row_size + j] / e.counts[i]); + } + } + + const float act_total = std::accumulate(activations.begin(), activations.end(), 0.0f); + const float act_max = *std::max_element(activations.begin(), activations.end()); + const float act_min = *std::min_element(activations.begin(), activations.end()); + const float act_mean = act_total / activations.size(); + const float act_sqr_total = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f); + const float act_var = (act_sqr_total / activations.size()) - (act_mean * act_mean); + const float act_dev = std::sqrt(std::max(0.0f, act_var)); + float threshold = 1e-5f; + const int inactive_count = std::count_if(activations.begin(), activations.end(), + [threshold](const float v) { return fabsf(v) <= threshold; }); + const float active_ratio = 1 - static_cast(inactive_count) / activations.size(); + + float entropy = 0; + if (act_total > 0) { + for (const auto act : activations) { + if (const float p = act / act_total; p > 0) { + entropy -= p * std::log2(p); + } + } + } + + int z_score = 0; + if (act_dev > 0.0f) { + for (const auto act : activations) { + if (const float p = (act - act_mean) / act_dev; p > 1) { + z_score++; + } + } + } + + auto & ts = tstats.emplace_back(); + ts.tensor = name; + ts.stats = e; + ts.total_sqract = act_total; + ts.mean_sqract = act_mean; + ts.max_sqract = act_max; + ts.min_sqract = act_min; + ts.elements = static_cast(activations.size()); + ts.stddev = act_dev; + ts.active = active_ratio; + ts.entropy = entropy; + ts.zd = static_cast(z_score) / ts.elements; +} + +static void compute_cossim(std::vector & tstats) { + static const std::regex pattern(R"(blk\.(\d+)\.)"); + for (auto & ts : tstats) { + if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) { + const int blk = std::stoi(match[1]); + std::string tname(ts.tensor); + tname.replace(match.position(1), match.length(1), std::to_string(blk-1)); + auto prev = std::find_if(tstats.begin(), tstats.end(), + [tname](const tensor_statistics & t) { return t.tensor == tname; }); + if (prev != tstats.end()) { + const float dp = std::inner_product(ts.stats.values.begin(), ts.stats.values.end(), + prev->stats.values.begin(), 0.0f); + const float curr_mag = std::sqrt(std::inner_product(ts.stats.values.begin(), ts.stats.values.end(), + ts.stats.values.begin(), 0.0f)); + const float prev_mag = std::sqrt(std::inner_product(prev->stats.values.begin(), prev->stats.values.end(), + prev->stats.values.begin(), 0.0f)); + const float cs = dp / (curr_mag * prev_mag); + ts.cossim = cs; + } + } else { + ts.cossim = 0; + } + } +} + bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { GGML_UNUSED(user_data); @@ -77,6 +223,8 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const struct ggml_tensor * src1 = t->src[1]; std::string wname = filter_tensor_name(src0->name); + const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; + // when ask is true, the scheduler wants to know if we are interested in data from this tensor // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection if (ask) { @@ -102,14 +250,21 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const char * data = is_host ? (const char *) src1->data : m_src1_data.data(); GGML_ASSERT(src1->nb[0] == ggml_element_size(src1)); + // TODO: 4d? (is that even used in practice?) + // the extra dimension would need to be stored somewhere to be reflected in the imatrix file + if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) { + LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str()); + GGML_ASSERT(false); + } + // this has been adapted to the new format of storing merged experts in a single 3d tensor // ref: https://github.com/ggml-org/llama.cpp/pull/6387 if (t->op == GGML_OP_MUL_MAT_ID) { // ids -> [n_experts_used, n_tokens] // src1 -> [cols, n_expert_used, n_tokens] const ggml_tensor * ids = t->src[2]; - const int n_as = src0->ne[2]; - const int n_ids = ids->ne[0]; + const int64_t n_as = src0->ne[2]; + const int64_t n_ids = ids->ne[0]; // the top-k selected expert ids are stored in the ids tensor // for simplicity, always copy ids to host, because it is small @@ -122,23 +277,29 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * auto & e = m_stats[wname]; - ++e.ncall; - + if (e.counts.size() == 1 && n_as > 1) { + // broadcast, when loading an old imatrix + e.counts.resize(n_as, e.counts[0]); + } if (e.values.empty()) { e.values.resize(src1->ne[0]*n_as, 0); - e.counts.resize(src1->ne[0]*n_as, 0); + e.counts.resize(n_as, 0); } else if (e.values.size() != (size_t)src1->ne[0]*n_as) { - LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); + LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as)); + exit(1); //GGML_ABORT("fatal error"); + } + else if (e.counts.size() != (size_t)n_as) { + LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as); exit(1); //GGML_ABORT("fatal error"); } - LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); + LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); // loop over all possible experts, regardless if they are used or not in the batch - for (int ex = 0; ex < n_as; ++ex) { + for (int64_t ex = 0; ex < n_as; ++ex) { size_t e_start = ex*src1->ne[0]; - for (int idx = 0; idx < n_ids; ++idx) { - for (int row = 0; row < (int)src1->ne[2]; ++row) { + for (int64_t idx = 0; idx < n_ids; ++idx) { + for (int64_t row = 0; row < src1->ne[2]; ++row) { const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check @@ -149,57 +310,73 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const int64_t i12 = row; const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]); - for (int j = 0; j < (int)src1->ne[0]; ++j) { - e.values[e_start + j] += x[j]*x[j]; - e.counts[e_start + j]++; - if (!std::isfinite(e.values[e_start + j])) { - LOG("\n"); - LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str()); + e.counts[ex]++; + + for (int64_t j = 0; j < src1->ne[0]; ++j) { + e.values[e_start + j] += x[j] * x[j]; + if (!std::isfinite((float)e.values[e_start + j])) { + LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str()); exit(1); } } } } - if (e.ncall > m_last_call) { - m_last_call = e.ncall; - if (m_last_call % m_params.n_out_freq == 0) { + const int32_t n_chunk = e.counts[ex] / chunk_size; + if (n_chunk > m_last_chunk) { + const int32_t chunk_step = n_chunk - m_last_chunk; + m_last_chunk = n_chunk; + if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { save_imatrix(); } - if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { - save_imatrix(m_last_call); + if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { + save_imatrix(m_last_chunk); } } } } else { auto & e = m_stats[wname]; + const int64_t n_mat = src1->ne[2] * src1->ne[3]; + if (e.values.empty()) { - e.values.resize(src1->ne[0], 0); - e.counts.resize(src1->ne[0], 0); + e.values.resize(src1->ne[0] * n_mat, 0); + e.counts.resize(n_mat, 0); } - else if (e.values.size() != (size_t)src1->ne[0]) { - LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); + else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) { + LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat)); exit(1); //GGML_ABORT("fatal error"); } - ++e.ncall; - LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); - for (int row = 0; row < (int)src1->ne[1]; ++row) { - const float * x = (const float *) (data + row * src1->nb[1]); - for (int j = 0; j < (int)src1->ne[0]; ++j) { - e.values[j] += x[j]*x[j]; - e.counts[j]++; - if (!std::isfinite(e.values[j])) { - LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str()); - exit(1); - } - } + else if (e.counts.size() != (size_t)n_mat) { + LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat); + exit(1); //GGML_ABORT("fatal error"); } - if (e.ncall > m_last_call) { - m_last_call = e.ncall; - if (m_last_call % m_params.n_out_freq == 0) { - save_imatrix(); - } - if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { - save_imatrix(m_last_call); + LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type); + for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) { + for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) { + const int64_t mat_id = i3 * src1->ne[2] + i2; + const int64_t mat_start = mat_id * src1->ne[0]; + + for (int64_t row = 0; row < src1->ne[1]; ++row) { + const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]); + e.counts[mat_id]++; + for (int64_t j = 0; j < src1->ne[0]; ++j) { + e.values[mat_start + j] += x[j] * x[j]; + if (!std::isfinite((float)e.values[j])) { + LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str()); + exit(1); + } + } + } + const int32_t n_chunk = e.counts[mat_id] / chunk_size; + if (n_chunk > m_last_chunk) { + const int32_t chunk_step = n_chunk - m_last_chunk; + m_last_chunk = n_chunk; + if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { + save_imatrix(); + } + if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { + save_imatrix(m_last_chunk); + } + } } } } @@ -207,7 +384,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * return true; } -void IMatrixCollector::save_imatrix(int ncall) const { +void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const { auto fname = m_params.out_file; if (ncall > 0) { @@ -215,7 +392,7 @@ void IMatrixCollector::save_imatrix(int ncall) const { fname += std::to_string(ncall); } - // avoid writing imatrix entries that do not have full data + // warn when writing imatrix entries that do not have full data // this can happen with MoE models where some of the experts end up not being exercised by the provided training data int n_entries = 0; @@ -247,8 +424,7 @@ void IMatrixCollector::save_imatrix(int ncall) const { } if (n_zeros > 0) { - LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); - continue; + LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); } n_entries++; @@ -259,93 +435,378 @@ void IMatrixCollector::save_imatrix(int ncall) const { LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size()); } + // deterministic tensor name order + std::sort(to_store.begin(), to_store.end()); + + const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; + std::ofstream out(fname, std::ios::binary); out.write((const char *) &n_entries, sizeof(n_entries)); for (const auto & name : to_store) { const auto & stat = m_stats.at(name); - int len = name.size(); + const int32_t len = name.size(); out.write((const char *) &len, sizeof(len)); out.write(name.c_str(), len); - out.write((const char *) &stat.ncall, sizeof(stat.ncall)); - int nval = stat.values.size(); + // ceiling division to avoid accidental zeros + const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size; + out.write((const char *) &ncall, sizeof(ncall)); + const int32_t nval = stat.values.size(); + const int32_t nmat = stat.counts.size(); out.write((const char *) &nval, sizeof(nval)); - if (nval > 0) { + if (nval > 0 && nmat > 0) { std::vector tmp(nval); - for (int i = 0; i < nval; i++) { - tmp[i] = (stat.values[i] / static_cast(stat.counts[i])) * static_cast(stat.ncall); + for (int32_t i = 0; i < nval; i++) { + float count = static_cast(stat.counts[i / (nval / nmat)]); + float value = stat.values[i]; + if (count == 0.0f) { + // store 1 for partial data + value = 1.0f; + count = 1.0f; + } + tmp[i] = (value / count) * static_cast(ncall); } - out.write((const char*)tmp.data(), nval*sizeof(float)); + out.write((const char *) tmp.data(), nval * sizeof(float)); } } // Write the number of call the matrix was computed with - out.write((const char *) &m_last_call, sizeof(m_last_call)); + out.write((const char *) &m_last_chunk, sizeof(m_last_chunk)); // Write the input filename at the end of the file to later on specify it in quantize { - int len = m_params.prompt_file.size(); + const char * dataset_file = m_params.prompt_file.c_str(); + int32_t len = m_params.prompt_file.size(); + // When there is no prompt but there were other imatrix files loaded, use the last dataset + if (m_params.prompt_file.empty() && !m_datasets.empty()) { + const std::string & dataset_str = m_datasets[m_datasets.size() - 1]; + dataset_file = dataset_str.c_str(); + len = dataset_str.size(); + } out.write((const char *) &len, sizeof(len)); - out.write(m_params.prompt_file.c_str(), len); + out.write(dataset_file, len); + } + + LOGV(1, "\n"); + LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str()); +} + +void IMatrixCollector::save_imatrix(int32_t n_chunk) const { + auto fname = m_params.out_file; + + // TODO: use the new format in more cases + if (!string_ends_with(fname, ".gguf")) { + LOG_WRN("\n%s: saving to legacy imatrix format because output suffix is not .gguf\n", __func__); + this->save_imatrix_legacy(n_chunk); + return; + } + + if (n_chunk > 0) { + fname += ".at_"; + fname += std::to_string(n_chunk); + } + + // write imatrix entries even if they don't have full data. (can be corrected when reading) + // this can happen with MoE models where some of the experts end up not being exercised by the provided training data + + std::vector to_store; + size_t data_size = 0; + + bool is_first = true; // for printing + for (const auto & kv : m_stats) { + const int n_all = kv.second.counts.size(); + + int n_zeros = 0; + for (const auto c : kv.second.counts) { + if (c == 0) { + n_zeros++; + } + } + + if (n_zeros != 0 && is_first) { + LOG_INF("\n"); + is_first = false; + } + + if (n_zeros > 0) { + LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); + } + + to_store.push_back(kv.first); + data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN); + data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN); } + // deterministic tensor name order + std::sort(to_store.begin(), to_store.end()); + + struct ggml_init_params params = { + /* .mem_size = */ data_size, + /* .mem_buffer = */ NULL, + /* .no_alloc = */ false, + }; + struct ggml_context * ctx = ggml_init(params); + struct gguf_context * ctx_gguf = gguf_init_empty(); + + { + std::vector datasets; + datasets.reserve(m_datasets.size() + 1); + for (size_t i = 0; i < m_datasets.size(); ++i) { + datasets.push_back(m_datasets[i].c_str()); + } + if (!m_params.prompt_file.empty()) { + datasets.push_back(m_params.prompt_file.c_str()); + } + + gguf_set_val_str(ctx_gguf, "general.type", "imatrix"); + // Write the dataset paths + gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size()); + // Write the number of chunks the matrix was computed with + gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk); + gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel); + } + + for (const auto & name : to_store) { + const auto & stat = m_stats.at(name); + const int32_t nval = (int32_t) stat.values.size(); + const int32_t nmat = (int32_t) stat.counts.size(); + if (nval > 0 && nmat > 0) { + struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat); + struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat); + ggml_format_name(in_sum2, "%s.in_sum2", name.c_str()); + ggml_format_name(counts, "%s.counts", name.c_str()); + + for (int32_t j = 0; j < nval; ++j) { + ((float *) in_sum2->data)[j] = (float) stat.values[j]; + } + for (int32_t j = 0; j < nmat; ++j) { + ((float *) counts->data)[j] = (float) stat.counts[j]; + } + + gguf_add_tensor(ctx_gguf, in_sum2); + gguf_add_tensor(ctx_gguf, counts); + } + } + + gguf_write_to_file(ctx_gguf, fname.c_str(), false); + LOGV(1, "\n"); - LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str()); + LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str()); + + gguf_free(ctx_gguf); + ggml_free(ctx); } -bool IMatrixCollector::load_imatrix(const char * fname) { +bool IMatrixCollector::load_imatrix_legacy(const char * fname) { std::ifstream in(fname, std::ios::binary); if (!in) { - LOG_ERR("%s: failed to open %s\n",__func__, fname); + LOG_ERR("%s: failed to open %s\n", __func__, fname); return false; } int n_entries; - in.read((char*)&n_entries, sizeof(n_entries)); + in.read((char *) &n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { LOG_ERR("%s: no data in file %s\n", __func__, fname); return false; } + // Guess the chunk size because it's not stored in the file + const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel; + for (int i = 0; i < n_entries; ++i) { - int len; in.read((char *)&len, sizeof(len)); - std::vector name_as_vec(len+1); - in.read((char *)name_as_vec.data(), len); + int32_t len = 0; + in.read((char *) &len, sizeof(len)); + std::vector name_as_vec(len + 1); + in.read((char *) name_as_vec.data(), len); if (in.fail()) { - LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname); + LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname); return false; } name_as_vec[len] = 0; - std::string name{name_as_vec.data()}; + std::string name{ name_as_vec.data() }; auto & e = m_stats[std::move(name)]; - int ncall; - in.read((char*)&ncall, sizeof(ncall)); - int nval; - in.read((char *)&nval, sizeof(nval)); + int32_t ncall = 0; + in.read((char *) &ncall, sizeof(ncall)); + int32_t nval = 0; + in.read((char *) &nval, sizeof(nval)); if (in.fail() || nval < 1) { - LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i); + LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i); m_stats = {}; return false; } if (e.values.empty()) { - e.values.resize(nval, 0); - e.counts.resize(nval, 0); + e.values.resize(nval, 0.0f); + e.counts.resize(1, 0); } std::vector tmp(nval); - in.read((char*)tmp.data(), nval*sizeof(float)); + in.read((char *) tmp.data(), nval * sizeof(float)); if (in.fail()) { - LOG_ERR("%s: failed reading data for entry %d\n",__func__,i); + LOG_ERR("%s: failed reading data for entry %d\n", __func__, i); m_stats = {}; return false; } - // Recreate the state as expected by save_imatrix(), and corerct for weighted sum. + // Recreate the state as expected by save_imatrix(), and correct for weighted sum. for (int i = 0; i < nval; i++) { - e.values[i] += tmp[i]; - e.counts[i] += ncall; + e.values[i] += tmp[i] * chunk_size; + } + // The legacy format doesn't distinguish the counts for different experts + for (size_t j = 0; j < e.counts.size(); ++j) { + e.counts[j] += ncall * chunk_size; + } + } + + { + // TODO: extract into its own method; this is also used by the GGUF-based format + // Calculate the last chunk count + int64_t max_count = 0; + for (const auto & stats : m_stats) { + for (int64_t count : stats.second.counts) { + if (count > max_count) { + max_count = count; + } + } } - e.ncall += ncall; + m_last_chunk = max_count / (chunk_size); + } + { + // Read the number of calls the matrix was computed with + int32_t n_calls; + in.read((char *) &n_calls, sizeof(n_calls)); + // ignore it because it's not important } + + // Read the dataset path to include it when writing to GGUF + if (!in.fail()){ + int32_t len = 0; + in.read((char *) &len, sizeof(len)); + if (!in.fail()) { + std::vector dataset; + dataset.resize(len + 1, 0); + in.read(dataset.data(), len); + if (!in.fail()) { + m_datasets.push_back(dataset.data()); + } + } + } + + return true; +} + +// Using GGUF as the file format, for greater extensibility +bool IMatrixCollector::load_imatrix(const char * file_name) { + struct ggml_context * ctx = nullptr; + struct gguf_init_params meta_gguf_params = { + /* .no_alloc = */ false, // the data is needed + /* .ctx = */ &ctx, + }; + struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params); + if (!ctx_gguf) { + return this->load_imatrix_legacy(file_name); + } + const int32_t n_entries = gguf_get_n_tensors(ctx_gguf); + if (n_entries < 1) { + LOG_ERR("%s: no data in file %s\n", __func__, file_name); + gguf_free(ctx_gguf); + ggml_free(ctx); + return false; + } + + const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS); + if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) { + const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key); + m_datasets.reserve(m_datasets.size() + n); + for (int64_t i = 0; i < n; ++i) { + m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i)); + } + } + + const std::string in_sum2_suffix{ ".in_sum2" }; + const std::string counts_suffix{ ".counts" }; + + // Could re-use m_stats instead, but this allows + // checking for completeness of *each* loaded imatrix file + // and also makes it easier to re-use a similar implementation in quantize.cpp + // Using an ordered map to get a deterministic iteration order. + std::map> sums_counts_for; + + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + std::string name = cur->name; + + if (name.empty()) { continue; } + + if (string_remove_suffix(name, in_sum2_suffix)) { + // in_sum2 + sums_counts_for[std::move(name)].first = cur; + } else if (string_remove_suffix(name, counts_suffix)) { + // counts + sums_counts_for[std::move(name)].second = cur; + } else { + // ignore other tensors + } + } + + for (const auto & sc : sums_counts_for) { + const std::string & name = sc.first; + const struct ggml_tensor * in_sum2 = sc.second.first; + const struct ggml_tensor * counts = sc.second.second; + + if (!in_sum2 || !counts) { + LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str()); + gguf_free(ctx_gguf); + ggml_free(ctx); + return false; + } + + auto & e = m_stats[name]; + + int64_t nval = ggml_nelements(in_sum2); + if (e.values.empty()) { + e.values.resize(nval, 0.0f); + } else if ((size_t) nval != e.values.size()) { + LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size()); + gguf_free(ctx_gguf); + ggml_free(ctx); + return false; + } + + int64_t ncounts = ggml_nelements(counts); + if (e.counts.empty()) { + e.counts.resize(ncounts, 0); + } else if (e.counts.size() == 1 && ncounts > 1) { + // broadcast, when loading an old imatrix + e.counts.resize(ncounts, e.counts[0]); + } else if ((size_t) ncounts != e.counts.size()) { + LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size()); + gguf_free(ctx_gguf); + ggml_free(ctx); + return false; + } + + // Recreate the state as expected by save_imatrix() + for (int64_t j = 0; j < nval; j++) { + e.values[j] += ((const float *) in_sum2->data)[j]; + } + for (int64_t j = 0; j < ncounts; j++) { + e.counts[j] += std::lround(((const float *) counts->data)[j]); + } + } + + // TODO: extract into its own method; this is also used by the legacy format + // Calculate the last chunk count + int64_t max_count = 0; + for (const auto & stats : m_stats) { + for (int64_t count : stats.second.counts) { + if (count > max_count) { + max_count = count; + } + } + } + m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel); + + gguf_free(ctx_gguf); + ggml_free(ctx); return true; } @@ -355,7 +816,6 @@ static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_dat return g_collector.collect_imatrix(t, ask, user_data); } - struct results_log_softmax { double log_softmax; float logit; @@ -428,12 +888,11 @@ static void process_logits( } } -static bool compute_imatrix(llama_context * ctx, const common_params & params) { +static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const bool add_bos = llama_vocab_get_add_bos(vocab); - const int n_ctx = llama_n_ctx(ctx); GGML_ASSERT(!llama_vocab_get_add_eos(vocab)); @@ -478,45 +937,61 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) { double nll = 0.0; double nll2 = 0.0; - LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch); + const int num_batches = (n_ctx + n_batch - 1) / n_batch; + const int n_seq = std::max(1, n_batch / n_ctx); - std::vector workers(std::thread::hardware_concurrency() - 1); + GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); + GGML_ASSERT(params.n_ctx == n_seq * n_ctx); - const int num_batches = (n_ctx + n_batch - 1) / n_batch; + llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); std::vector logits; if (params.compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } - for (int i = 0; i < n_chunk; ++i) { + LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); + + std::vector workers(std::thread::hardware_concurrency() - 1); + + for (int i = 0; i < n_chunk; i += n_seq) { const int start = i * n_ctx; const int end = start + n_ctx; - std::vector logits; + const int n_seq_batch = std::min(n_seq, n_chunk - i); const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_memory_clear(llama_get_memory(ctx), true); - llama_batch batch = llama_batch_init(n_batch, 0, 1); - for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); - // save original token and restore it after eval - const auto token_org = tokens[batch_start]; + // clear the batch + common_batch_clear(batch); - // add BOS token for the first batch of each chunk - if (add_bos && j == 0) { - tokens[batch_start] = llama_vocab_bos(vocab); - } + for (int seq = 0; seq < n_seq_batch; seq++) { + int seq_start = batch_start + seq*n_ctx; - common_batch_clear(batch); - for (int i = 0; i < batch_size; i++) { - common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); + // save original token and restore it after eval + const auto token_org = tokens[seq_start]; + + // add BOS token for the first batch of each chunk + if (add_bos && j == 0) { + tokens[seq_start] = llama_vocab_bos(vocab); + } + for (int k = 0; k < batch_size; ++k) { + // NOTE: specifying all logits to get activations for the output.weight tensor + // and also for the perplexity calculation. + // TODO: only get outputs when (params.process_output || params.compute_ppl) + // (not possible when this skips FFN computation of the last layer) + common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true); + } + + // restore the original token in case it was set to BOS + tokens[seq_start] = token_org; } if (llama_decode(ctx, batch)) { @@ -525,23 +1000,19 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) { return false; } - // restore the original token in case it was set to BOS - tokens[batch_start] = token_org; - if (params.compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } - llama_batch_free(batch); - - const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { + llama_synchronize(ctx); + const auto t_end = std::chrono::high_resolution_clock::now(); const float t_total = std::chrono::duration(t_end - t_start).count(); LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); - int total_seconds = (int)(t_total * n_chunk); + int total_seconds = (int)(t_total * n_chunk / n_seq); if (total_seconds >= 60*60) { LOG("%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); @@ -551,17 +1022,27 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) { if (params.compute_ppl) { const int first = n_ctx/2; - const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); - process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); - count += n_ctx - first - 1; + for (int seq = 0; seq < n_seq_batch; seq++) { + const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx); - LOG("[%d]%.4lf,", i + 1, std::exp(nll / count)); + llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; + + process_logits(n_vocab, all_logits + first*n_vocab, + tokens_data, n_ctx - 1 - first, + workers, nll, nll2, + logit_history.data() + start + seq*n_ctx + first, + prob_history.data() + start + seq*n_ctx + first); + + count += n_ctx - first - 1; + + LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); + } fflush(stdout); logits.clear(); } } + LOG("\n"); if (params.compute_ppl) { @@ -577,13 +1058,122 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) { } } + llama_batch_free(batch); + + return true; +} + +static bool show_statistics(const common_params & params) { + std::vector ts; + if (params.in_files.empty() || params.in_files.size() > 1) { + LOG_ERR("\nError: a single imatrix file is required to compute tensor statistics\n\n"); + return false; + } + if (g_collector.load_imatrix(params.in_files[0].c_str())) { + for (const auto & [name, stats] :g_collector.get_mstats()) { + compute_statistics(ts, name, stats); + } + } else { + LOG_ERR("\nError: %s is not a valid imatrix file\n\n", params.in_files[0].c_str()); + return false; + } + if (!ts.empty()) { + compute_cossim(ts); + } else { + LOG_ERR("Error: cannot compute statistics for %s\n\n", params.in_files[0].c_str()); + return false; + } + + struct tensor_comparer { + bool operator()(const tensor_statistics & a, const tensor_statistics & b) const { + std::string layer, name_a, name_b; + ; + process_tensor_name(a.tensor, layer, name_a); + process_tensor_name(b.tensor, layer, name_b); + return name_a < name_b || (name_a == name_b && a.total_sqract > b.total_sqract); + } + }; + std::sort(ts.begin(), ts.end(), tensor_comparer()); + + struct weighted_stats { + float weighted_bias = 0.0f; + float weighted_zd = 0.0f; + float weighted_cossim = 0.0f; + int total_elements = 0; + }; + std::map ws; + + LOG_INF("\nComputing statistics for %s (%d tensors)\n", params.in_files[0].c_str(), static_cast(ts.size())); + LOG_INF("\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n", " Layer", " Tensor", " Σ(Act²)", + " Min", " Max", " μ", " σ", " % Active", "N", " Entropy", "E (norm)", "ZD", + " CosSim"); + LOG_INF( + "==============================================================================================================" + "===========================================================\n"); + for (const auto & tstat : ts) { + std::string layer, name; + process_tensor_name(tstat.tensor, layer, name); + + int blk; + try { + blk = std::stoi(layer); + } catch (const std::exception & e) { + blk = -1; // not a block layer + } + + LOG_INF("%5s\t%-20s\t%10.2f\t%8.4f\t%11.4f\t%6.2f\t%6.2f\t%8.2f%%\t%6d\t%10.4f\t%6.2f%%\t%10.2f%%\t%8.4f\n", + layer.c_str(), name.c_str(), tstat.total_sqract, tstat.min_sqract, tstat.max_sqract, tstat.mean_sqract, + tstat.stddev, tstat.active * 100.0f, tstat.elements, tstat.entropy, + 100.0f * (tstat.entropy / std::log2(tstat.elements)), 100.0f * tstat.zd, tstat.cossim); + + const float weighted_bias = tstat.elements * tstat.total_sqract; + const float weighted_zd = tstat.elements * tstat.zd; + const float weighted_cossim = tstat.elements * tstat.cossim; + + if (ws.find(blk) != ws.end()) { + ws[blk].weighted_bias += weighted_bias; + ws[blk].weighted_zd += weighted_zd; + ws[blk].weighted_cossim += weighted_cossim; + ws[blk].total_elements += tstat.elements; + } else { + weighted_stats temp_ws; + temp_ws.weighted_bias = weighted_bias; + temp_ws.weighted_zd = weighted_zd; + temp_ws.weighted_cossim = weighted_cossim; + temp_ws.total_elements = tstat.elements; + ws[blk] = temp_ws; + } + } + + const int layers = std::count_if(ws.begin(), ws.end(), [](const auto & kv) { return kv.first >= 0; }); + LOG_INF("\nComputing weighted average statistics per layer (%d layers)\n", layers); + LOG_INF("\n%s\t%s\t%s\t%s\n", " Layer", " μΣ(Act²)", " μZD", "μCosSim"); + LOG_INF("================================================\n"); + for (const auto & [first, second] : ws) { + const auto & layer = first; + const auto & stats = second; + + if (stats.total_elements == 0) { + continue; + } + + if (layer >= 0) { + const float bias = stats.weighted_bias / stats.total_elements; + const float zd = stats.weighted_zd / stats.total_elements; + const float cossim = stats.weighted_cossim / stats.total_elements; + + LOG_INF("%5d\t%14.2f\t%10.4f%%\t%6.4f\n", layer, bias, 100.0f * zd, cossim); + } + } + LOG_INF("\n"); + return true; } int main(int argc, char ** argv) { common_params params; - params.out_file = "imatrix.dat" ; + params.out_file = "imatrix.gguf"; params.n_ctx = 512; params.escape = false; @@ -592,9 +1182,31 @@ int main(int argc, char ** argv) { return 1; } + if (params.show_statistics) { + if (!show_statistics(params)) { + return 1; + } + return 0; + } + common_init(); - params.n_batch = std::min(params.n_batch, params.n_ctx); + const int32_t n_ctx = params.n_ctx; + + if (n_ctx <= 0) { + LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__); + return 1; + } + + { + const int32_t n_seq = std::max(1, params.n_batch / n_ctx); + const int32_t n_kv = n_seq * n_ctx; + + params.n_parallel = n_seq; + params.n_ctx = n_kv; + + params.n_batch = std::min(params.n_batch, n_kv); + } g_collector.set_params(params); @@ -606,9 +1218,23 @@ int main(int argc, char ** argv) { } } - if (params.in_files.size() > 1) { - LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); + if (params.prompt.empty()) { + LOG_INF("No prompt provided; combining precomputed matrices only.\n"); + + if (params.in_files.empty()) { + LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n"); + return 1; + } + + if (params.in_files.size() == 1) { + LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str()); + } else if (params.in_files.size() > 1) { + LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); + } + g_collector.save_imatrix(); + + return 0; } llama_backend_init(); @@ -643,19 +1269,10 @@ int main(int argc, char ** argv) { LOG_INF("%s\n", common_params_get_system_info(params).c_str()); } - if (params.prompt.empty()) { - if (params.in_files.empty()) { - LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n"); - return 1; - } - LOG_INF("No prompt provided; combining precomputed matrices only.\n"); - } else { - if (!compute_imatrix(ctx, params)) { - return 1; - } + if (!compute_imatrix(ctx, params, n_ctx)) { + return 1; } - g_collector.save_imatrix(); LOG("\n"); diff --git a/tools/main/main.cpp b/tools/main/main.cpp index 516bf0965..eb36c6884 100644 --- a/tools/main/main.cpp +++ b/tools/main/main.cpp @@ -785,14 +785,17 @@ int main(int argc, char ** argv) { } // check for reverse prompt using special tokens - llama_token last_token = common_sampler_last(smpl); - for (auto token : antiprompt_token) { - if (token == last_token) { - if (params.interactive) { - is_interacting = true; + // avoid calling common_sampler_last() if last_output is empty + if (!last_output.empty()) { + llama_token last_token = common_sampler_last(smpl); + for (auto token : antiprompt_token) { + if (token == last_token) { + if (params.interactive) { + is_interacting = true; + } + is_antiprompt = true; + break; } - is_antiprompt = true; - break; } } diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp index 9146c9e9c..be191404c 100644 --- a/tools/mtmd/clip.cpp +++ b/tools/mtmd/clip.cpp @@ -367,8 +367,8 @@ struct clip_ctx { std::vector backend_ptrs; std::vector backend_buft; - ggml_backend_t backend; - ggml_backend_t backend_cpu; + ggml_backend_t backend = nullptr; + ggml_backend_t backend_cpu = nullptr; ggml_backend_buffer_ptr buf; int max_nodes = 8192; @@ -384,9 +384,18 @@ struct clip_ctx { if (!backend_cpu) { throw std::runtime_error("failed to initialize CPU backend"); } - backend = ctx_params.use_gpu - ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr) - : nullptr; + if (ctx_params.use_gpu) { + auto backend_name = std::getenv("MTMD_BACKEND_DEVICE"); + if (backend_name != nullptr) { + backend = ggml_backend_init_by_name(backend_name, nullptr); + if (!backend) { + LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name); + } + } + if (!backend) { + backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr); + } + } if (backend) { LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend)); diff --git a/tools/quantize/quantize.cpp b/tools/quantize/quantize.cpp index 8acc76517..45c59ecb6 100644 --- a/tools/quantize/quantize.cpp +++ b/tools/quantize/quantize.cpp @@ -1,11 +1,13 @@ #include "common.h" #include "llama.h" +#include "gguf.h" #include #include #include #include #include +#include #include #include #include @@ -68,6 +70,11 @@ static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count"; static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count"; +// TODO: share with imatrix.cpp +static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets"; +static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count"; +static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size"; + static bool striequals(const char * a, const char * b) { while (*a && *b) { if (std::tolower(*a) != std::tolower(*b)) { @@ -84,7 +91,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp for (auto ch : ftype_str_in) { ftype_str.push_back(std::toupper(ch)); } - for (auto & it : QUANT_OPTIONS) { + for (const auto & it : QUANT_OPTIONS) { if (striequals(it.name.c_str(), ftype_str.c_str())) { ftype = it.ftype; ftype_str_out = it.name; @@ -93,7 +100,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp } try { int ftype_int = std::stoi(ftype_str); - for (auto & it : QUANT_OPTIONS) { + for (const auto & it : QUANT_OPTIONS) { if (it.ftype == ftype_int) { ftype = it.ftype; ftype_str_out = it.name; @@ -129,7 +136,7 @@ static void usage(const char * executable) { printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("\nAllowed quantization types:\n"); - for (auto & it : QUANT_OPTIONS) { + for (const auto & it : QUANT_OPTIONS) { if (it.name != "COPY") { printf(" %2d or ", it.ftype); } else { @@ -140,7 +147,7 @@ static void usage(const char * executable) { exit(1); } -static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map> & imatrix_data) { +static int load_legacy_imatrix(const std::string & imatrix_file, std::vector & imatrix_datasets, std::unordered_map> & imatrix_data) { std::ifstream in(imatrix_file.c_str(), std::ios::binary); if (!in) { printf("%s: failed to open %s\n",__func__, imatrix_file.c_str()); @@ -180,7 +187,9 @@ static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_ exit(1); } if (ncall > 0) { - for (auto& v : e) v /= ncall; + for (auto & v : e) { + v /= ncall; + } } if (getenv("LLAMA_TRACE")) { @@ -188,7 +197,7 @@ static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_ } } - // latest imatrix version contains the dataset filename at the end of the file + // latest legacy imatrix version contains the dataset filename at the end of the file int m_last_call = 0; if (in.peek() != EOF) { in.read((char *)&m_last_call, sizeof(m_last_call)); @@ -196,15 +205,130 @@ static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_ in.read((char *)&dataset_len, sizeof(dataset_len)); std::vector dataset_as_vec(dataset_len); in.read(dataset_as_vec.data(), dataset_len); - imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end()); - printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str()); + imatrix_datasets.resize(1); + imatrix_datasets[0].assign(dataset_as_vec.begin(), dataset_as_vec.end()); + printf("%s: imatrix dataset='%s'\n", __func__, imatrix_datasets[0].c_str()); } printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call); return m_last_call; } +static int load_imatrix(const std::string & imatrix_file, std::vector & imatrix_datasets, std::unordered_map> & imatrix_data) { + + struct ggml_context * ctx = nullptr; + struct gguf_init_params meta_gguf_params = { + /* .no_alloc = */ false, // the data is needed + /* .ctx = */ &ctx, + }; + struct gguf_context * ctx_gguf = gguf_init_from_file(imatrix_file.c_str(), meta_gguf_params); + if (!ctx_gguf) { + fprintf(stderr, "%s: imatrix file '%s' is using old format\n", __func__, imatrix_file.c_str()); + return load_legacy_imatrix(imatrix_file, imatrix_datasets, imatrix_data); + } + const int32_t n_entries = gguf_get_n_tensors(ctx_gguf); + if (n_entries < 1) { + fprintf(stderr, "%s: no data in file %s\n", __func__, imatrix_file.c_str()); + gguf_free(ctx_gguf); + ggml_free(ctx); + exit(1); + } + + const int dataset_idx = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS); + const int chunk_count_idx = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT); + const int chunk_size_idx = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE); + if (dataset_idx < 0 || chunk_count_idx < 0 || chunk_size_idx < 0) { + fprintf(stderr, "%s: missing imatrix metadata in file %s\n", __func__, imatrix_file.c_str()); + gguf_free(ctx_gguf); + ggml_free(ctx); + exit(1); + } + + const uint32_t chunk_size = gguf_get_val_u32(ctx_gguf, chunk_size_idx); + + const std::string sums_suffix{ ".in_sum2" }; + const std::string counts_suffix{ ".counts" }; + + // Using an ordered map to get a deterministic iteration order. + std::map> sums_counts_for; + + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + std::string name = cur->name; + + if (name.empty()) { continue; } + + if (string_remove_suffix(name, sums_suffix)) { + // in_sum2 + sums_counts_for[std::move(name)].first = cur; + } else if (string_remove_suffix(name, counts_suffix)) { + // counts + sums_counts_for[std::move(name)].second = cur; + } else { + // ignore other tensors + } + } + + for (const auto & sc : sums_counts_for) { + const std::string & name = sc.first; + const struct ggml_tensor * sums = sc.second.first; + const struct ggml_tensor * counts = sc.second.second; + + if (!sums || !counts) { + fprintf(stderr, "%s: mismatched sums and counts for %s\n", __func__, name.c_str()); + gguf_free(ctx_gguf); + ggml_free(ctx); + exit(1); + } + + const int64_t ne0 = sums->ne[0]; + const int64_t ne1 = sums->ne[1]; + + auto & e = imatrix_data[name]; + e.resize(ggml_nelements(sums)); + float max_count = 0.0f; + for (int64_t j = 0; j < ne1; ++j) { + const float count = ((const float *) counts->data)[j]; + if (count > 0.0f) { + for (int64_t i = 0; i < ne0; ++i) { + e[j*ne0 + i] = ((const float *) sums->data)[j*ne0 + i] / count; + } + } else { + // Partial imatrix data, this tensor never got any input during calibration + for (int64_t i = 0; i < ne0; ++i) { + e[j*ne0 + i] = 1; + } + } + if (count > max_count) { + max_count = count; + } + } + if (getenv("LLAMA_TRACE")) { + printf("%s: loaded data (size = %6d, n_tokens = %6d, n_chunks = %6d) for '%s'\n", __func__, int(e.size()), int(max_count), int(max_count / chunk_size), name.c_str()); + } + } + + int m_last_chunk = gguf_get_val_u32(ctx_gguf, chunk_count_idx); + + int64_t n_datasets = gguf_get_arr_n(ctx_gguf, dataset_idx); + imatrix_datasets.reserve(n_datasets); + for (int64_t i = 0; i < n_datasets; ++i) { + imatrix_datasets.push_back(gguf_get_val_str(ctx_gguf, dataset_idx)); + } + printf("%s: imatrix datasets=['%s'", __func__, imatrix_datasets[0].c_str()); + for (size_t i = 1; i < imatrix_datasets.size(); ++i) { + printf(", '%s'", imatrix_datasets[i].c_str()); + } + printf("]\n"); + + printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_chunk); + + gguf_free(ctx_gguf); + ggml_free(ctx); + + return m_last_chunk; +} + static int prepare_imatrix(const std::string & imatrix_file, - std::string & imatrix_dataset, + std::vector & imatrix_dataset, const std::vector & included_weights, const std::vector & excluded_weights, std::unordered_map> & imatrix_data) { @@ -216,18 +340,21 @@ static int prepare_imatrix(const std::string & imatrix_file, return m_last_call; } if (!excluded_weights.empty()) { - for (auto& name : excluded_weights) { - for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) { + for (const auto & name : excluded_weights) { + for (auto it = imatrix_data.begin(); it != imatrix_data.end();) { auto pos = it->first.find(name); - if (pos != std::string::npos) it = imatrix_data.erase(it); - else ++it; + if (pos != std::string::npos) { + it = imatrix_data.erase(it); + } else { + ++it; + } } } } if (!included_weights.empty()) { std::unordered_map> tmp; - for (auto& name : included_weights) { - for (auto& e : imatrix_data) { + for (const auto & name : included_weights) { + for (auto & e : imatrix_data) { auto pos = e.first.find(name); if (pos != std::string::npos) { tmp.emplace(std::move(e)); @@ -396,9 +523,9 @@ int main(int argc, char ** argv) { usage(argv[0]); } - std::string imatrix_dataset; + std::vector imatrix_datasets; std::unordered_map> imatrix_data; - int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data); + int m_last_call = prepare_imatrix(imatrix_file, imatrix_datasets, included_weights, excluded_weights, imatrix_data); if (!imatrix_data.empty()) { params.imatrix = &imatrix_data; { @@ -409,11 +536,12 @@ int main(int argc, char ** argv) { kvo.val_str[127] = '\0'; kv_overrides.emplace_back(std::move(kvo)); } - if (!imatrix_dataset.empty()) { + if (!imatrix_datasets.empty()) { llama_model_kv_override kvo; + // TODO: list multiple datasets when there are more than one std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET); kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; - strncpy(kvo.val_str, imatrix_dataset.c_str(), 127); + strncpy(kvo.val_str, imatrix_datasets[0].c_str(), 127); kvo.val_str[127] = '\0'; kv_overrides.emplace_back(std::move(kvo)); } diff --git a/tools/server/README.md b/tools/server/README.md index e29511cb1..aa07f1ef5 100644 --- a/tools/server/README.md +++ b/tools/server/README.md @@ -575,6 +575,8 @@ These words will not be included in the completion, so make sure to add them to `add_special`: (Optional) Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false` +`parse_special`: (Optional) Boolean indicating if special tokens should be tokenized. When `false` special tokens are treated as plaintext. Default: `true` + `with_pieces`: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: `false` **Response:** diff --git a/tools/server/server.cpp b/tools/server/server.cpp index 0afe213af..022b5d0b3 100644 --- a/tools/server/server.cpp +++ b/tools/server/server.cpp @@ -253,6 +253,7 @@ struct server_task { defaults.sampling = params_base.sampling; defaults.speculative = params_base.speculative; defaults.n_keep = params_base.n_keep; + defaults.antiprompt = params_base.antiprompt; // enabling this will output extra debug information in the HTTP responses from the server params.verbose = params_base.verbosity > 9; @@ -490,6 +491,10 @@ struct server_task { } } } + // set reverse prompt from cli args if not set in the request + if (params.antiprompt.empty()) { + params.antiprompt = defaults.antiprompt; + } } { @@ -4516,9 +4521,10 @@ int main(int argc, char ** argv) { json tokens_response = json::array(); if (body.count("content") != 0) { const bool add_special = json_value(body, "add_special", false); + const bool parse_special = json_value(body, "parse_special", true); const bool with_pieces = json_value(body, "with_pieces", false); - llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true); + llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special); if (with_pieces) { for (const auto& token : tokens) {