You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
``ruspy`` is an open-source package for the simulation and estimation of a prototypical
20
+
infinite-horizon dynamic discrete choice model based on
21
+
22
+
Rust, J. (1987). [Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher.](https://doi.org/10.2307/1911259) *Econometrica, 55* (5), 999-1033.
23
+
24
+
You can install ``ruspy`` via conda with
25
+
26
+
.. code-block:: bash
27
+
28
+
$ conda config --add channels conda-forge
29
+
$ conda install -c opensourceeconomics ruspy
30
+
31
+
Please visit our `online documentation <https://ruspy.readthedocs.io/>`_ for
32
+
tutorials and other information.
33
+
34
+
35
+
Citation
36
+
--------
37
+
38
+
If you use ruspy for your research, do not forget to cite it with
39
+
40
+
.. code-block:: bash
41
+
42
+
@Unpublished{ruspy-1.0,
43
+
Author = {Maximilian Blesch},
44
+
Title = {robupy - An open-source package for the simulation and estimation of a prototypical infinite-horizon dynamic discrete choice model based on Rust (1987)},
The initialization dictionary contains model, optimizer and algorithmic specific
64
-
information. The information on theses three categories is saved in subdictionaries under
65
-
the keys **model_specifications**, **optimizer** and **alg_details**. The model specific
66
-
information is mandatory, while the others are optional. If not given, just the default
67
-
values are selected. See :ref:`alg_details` for the possible keys and the default values.
68
-
The mandatory model specific information keys are:
64
+
information. The information on theses three categories is saved in subdictionaries
65
+
under the keys **model_specifications**, **optimizer** and **alg_details**. The
66
+
model specific information is mandatory, while the others are optional. If not given,
67
+
just the default values are selected. See :ref:`alg_details` for the possible keys
68
+
and the default values. The mandatory model specific information keys are:
69
69
70
70
**discount_factor :** *(float)* The discount factor. See :ref:`disc_fac` for details.
71
71
@@ -79,8 +79,10 @@ details.
79
79
80
80
81
81
82
-
The dictionary under **optimizer** allows to specify the optimizer from the `scipy library
83
-
<http://lagrange.univ-lyon1.fr/docs/scipy/0.17.1/generated/scipy.optimize.minimize.html>`_. The entries of the dictionary are all *strings* and the following keys are so far possible:
82
+
The dictionary under **optimizer** allows to specify the optimizer from the `scipy
Even though transition probabilities need to add up to 1 and have to be positive, there
160
162
are no constraints on the minimized parameters. The constraints are applied inside
161
163
``loglike_trans`` by a reparametrization function:
@@ -222,7 +224,10 @@ The transition matrix is then used for the cost parameter estimation.
222
224
Cost parameter estimation
223
225
-------------------------
224
226
225
-
The cost parameters are estimated directly by minimizing the log-likelihood and the corresponding jacobian function with a minimize function from the `scipy library <http://lagrange.univ-lyon1.fr/docs/scipy/0.17.1/generated/scipy.optimize.minimize.html>`_ . The functions can be found in ``ruspy.estimation.est_cost_params``:
227
+
The cost parameters are estimated directly by minimizing the log-likelihood and the
228
+
corresponding jacobian function with a minimize function from the `scipy library
0 commit comments