Skip to content

Commit 0ed9c86

Browse files
committed
fix doc
1 parent 318e814 commit 0ed9c86

File tree

2 files changed

+7
-5
lines changed

2 files changed

+7
-5
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ The *solution space properties* include
1212
* The enumeration of solutions at certain sizes.
1313
* The direct sampling of solutions at certain sizes.
1414

15-
The solvable problems include [Independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/IndependentSet/), [Maximal independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaximalIS/), [Cutting problem (Spin-glass problem)](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SpinGlass/), [Vertex matching problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Matching/), [Binary paint shop problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/PaintShop/), [Coloring problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Coloring/), [Dominating set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/DominatingSet/), [Set packing problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetPacking/), [Satisfiability problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Satisfiability/) and [Set covering problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetCovering/).
15+
The solvable problems include [Independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/IndependentSet/), [Maximal independent set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/MaximalIS/), [Spin-glass problem (Cutting problem)](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SpinGlass/), [Vertex matching problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Matching/), [Binary paint shop problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/PaintShop/), [Coloring problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Coloring/), [Dominating set problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/DominatingSet/), [Set packing problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetPacking/), [Satisfiability problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/Satisfiability/) and [Set covering problem](https://queracomputing.github.io/GenericTensorNetworks.jl/dev/generated/SetCovering/).
1616

1717
## Installation
1818
<p>

docs/src/index.md

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ The *solution space properties* include
1111
* The enumeration of solutions at certain sizes.
1212
* The direct sampling of solutions at certain sizes.
1313

14-
The solvable problems include [Independent set problem](@ref), [Maximal independent set problem](@ref), [Cutting problem (Spin-glass problem)](@ref), [Vertex matching problem](@ref), [Binary paint shop problem](@ref), [Coloring problem](@ref), [Dominating set problem](@ref), [Satisfiability problem](@ref), [Set packing problem](@ref) and [Set covering problem](@ref).
14+
The solvable problems include [Independent set problem](@ref), [Maximal independent set problem](@ref), [Spin-glass problem (Cutting problem)](@ref), [Vertex matching problem](@ref), [Binary paint shop problem](@ref), [Coloring problem](@ref), [Dominating set problem](@ref), [Satisfiability problem](@ref), [Set packing problem](@ref) and [Set covering problem](@ref).
1515

1616
## Background knowledge
1717

@@ -32,8 +32,9 @@ julia> solve(
3232
IndependentSet(
3333
Graphs.random_regular_graph(20, 3);
3434
optimizer = TreeSA(),
35-
weights = NoWeight(), # the default value
36-
openvertices = () # the default value
35+
weights = NoWeight(), # default: uniform weight 1
36+
openvertices = (), # default: no open vertices
37+
fixedvertices = Dict() # default: no fixed vertices
3738
),
3839
GraphPolynomial();
3940
usecuda=false # the default value
@@ -45,7 +46,8 @@ Polynomial(1 + 20*x + 160*x^2 + 659*x^3 + 1500*x^4 + 1883*x^5 + 1223*x^6 + 347*x
4546
Here the main function [`solve`](@ref) takes three input arguments, the problem instance of type [`IndependentSet`](@ref), the property instance of type [`GraphPolynomial`](@ref) and an optional key word argument `usecuda` to decide use GPU or not.
4647
If one wants to use GPU to accelerate the computation, the `using CUDA` statement must uncommented.
4748

48-
The problem instance takes four arguments to initialize, the only positional argument is the graph instance that one wants to solve, the key word argument `optimizer` is for specifying the tensor network optimization algorithm, the key word argument `weights` is for specifying the weights of vertices as either a vector or `NoWeight()` and the keyword argument `openvertices` is for specifying the degrees of freedom not summed over.
49+
The problem instance takes four arguments to initialize, the only positional argument is the graph instance that one wants to solve, the key word argument `optimizer` is for specifying the tensor network optimization algorithm, the key word argument `weights` is for specifying the weights of vertices as either a vector or `NoWeight()`.
50+
The keyword argument `openvertices` is a tuple of labels for specifying the degrees of freedom not summed over, and `fixedvertices` is a label-value dictionary for specifying the fixed values of the degree of freedoms.
4951
Here, we use [`TreeSA`](@ref) method as the tensor network optimizer, and leave `weights` and `openvertices` the default values.
5052
The [`TreeSA`](@ref) method finds the best contraction order in most of our applications, while the default [`GreedyMethod`](@ref) runs the fastest.
5153

0 commit comments

Comments
 (0)