-
-
Notifications
You must be signed in to change notification settings - Fork 35
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Describe the bug 🐞
When I trying to solve in backward direction I always get a batch solve failed with collapsed bounds of tspan
(e.g. if I set up tspan = (-1.0, -3.0)
it will show that tspan
is -1.0f0
and ts = [-1.0, -1.0]
). I've tried to use either positive or negative values of dt
, several kernels (GPUTsit5, GPUVern9, etc).
Expected behavior
The negative tspan
direction should work the same way as positive.
Minimal Reproducible Example 👇
I've found problem on another system, but for MRE I reproduce it with lorenz equation, and got the same behavior.
using DiffEqGPU, OrdinaryDiffEq, StaticArrays, CUDA
function lorenz(u, p, t)
σ = p[1]
ρ = p[2]
β = p[3]
du1 = σ * (u[2] - u[1])
du2 = u[1] * (ρ - u[3]) - u[2]
du3 = u[1] * u[2] - β * u[3]
return SVector{3}(du1, du2, du3)
end
FloatType = Float32
u0 = @SVector FloatType[1.0; 0.0; 0.0]
tspan = (FloatType(0.0), -FloatType(10.0))
p = @SVector FloatType[10.0, 28.0, 8 / 3.0]
prob = ODEProblem{false}(lorenz, u0, tspan, p)
prob_func = (prob, i, repeat) -> remake(prob, p = (@SVector rand(FloatType, 3)) .* p)
monteprob = EnsembleProblem(prob, prob_func = prob_func, safetycopy = false)
sol = solve(
monteprob,
GPUTsit5(),
EnsembleGPUKernel(CUDA.CUDABackend()),
trajectories = 10,
dt = -1e-4,
)
Error & Stacktrace
Batch solve failed
Stacktrace:
[1] error(s::String)
@ Base ./error.jl:35
[2] #112
@ ~/.julia/packages/DiffEqGPU/0Jmg9/src/solve.jl:181 [inlined]
[3] (::DiffEqGPU.var"#112#128"{SciMLBase.EnsembleProblem{SciMLBase.ODEProblem{StaticArraysCore.SVector{3, Float32}, Tuple{Float32, Float32}, false, StaticArraysCore.SVector{3, Float32}, SciMLBase.ODEFunction{false, SciMLBase.AutoSpecialize, typeof(Main.var"workspace#2".lorenz), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, var"#27#28"{typeof(SciMLBase.remake), StaticArraysCore.SVector{3, Float32}, DataType, typeof(*)}, typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, DiffEqGPU.GPUTsit5, Matrix{Float32}})(i::Int64)
@ DiffEqGPU ./none:0
[4] iterate
@ ./generator.jl:48 [inlined]
[5] collect(itr::Base.Generator{Base.OneTo{Int64}, DiffEqGPU.var"#112#128"{SciMLBase.EnsembleProblem{SciMLBase.ODEProblem{StaticArraysCore.SVector{3, Float32}, Tuple{Float32, Float32}, false, StaticArraysCore.SVector{3, Float32}, SciMLBase.ODEFunction{false, SciMLBase.AutoSpecialize, typeof(Main.var"workspace#2".lorenz), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, var"#27#28"{typeof(SciMLBase.remake), StaticArraysCore.SVector{3, Float32}, DataType, typeof(*)}, typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, DiffEqGPU.GPUTsit5, Matrix{Float32}}})
@ Base ./array.jl:791
[6] batch_solve(ensembleprob::SciMLBase.EnsembleProblem{SciMLBase.ODEProblem{StaticArraysCore.SVector{3, Float32}, Tuple{Float32, Float32}, false, StaticArraysCore.SVector{3, Float32}, SciMLBase.ODEFunction{false, SciMLBase.AutoSpecialize, typeof(Main.var"workspace#2".lorenz), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, var"#27#28"{typeof(SciMLBase.remake), StaticArraysCore.SVector{3, Float32}, DataType, typeof(*)}, typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, alg::DiffEqGPU.GPUTsit5, ensemblealg::DiffEqGPU.EnsembleGPUKernel{CUDA.CUDAKernels.CUDABackend}, I::UnitRange{Int64}, adaptive::Bool; kwargs::@Kwargs{unstable_check::DiffEqGPU.var"#100#106", dt::Float64})
@ DiffEqGPU ~/.julia/packages/DiffEqGPU/0Jmg9/src/solve.jl:175
[7] macro expansion
@ ./timing.jl:421 [inlined]
[8] __solve(ensembleprob::SciMLBase.EnsembleProblem{SciMLBase.ODEProblem{StaticArraysCore.SVector{3, Float32}, Tuple{Float32, Float32}, false, StaticArraysCore.SVector{3, Float32}, SciMLBase.ODEFunction{false, SciMLBase.AutoSpecialize, typeof(Main.var"workspace#2".lorenz), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, var"#27#28"{typeof(SciMLBase.remake), StaticArraysCore.SVector{3, Float32}, DataType, typeof(*)}, typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, alg::DiffEqGPU.GPUTsit5, ensemblealg::DiffEqGPU.EnsembleGPUKernel{CUDA.CUDAKernels.CUDABackend}; trajectories::Int64, batch_size::Int64, unstable_check::Function, adaptive::Bool, kwargs::@Kwargs{dt::Float64})
@ DiffEqGPU ~/.julia/packages/DiffEqGPU/0Jmg9/src/solve.jl:55
[9] solve(::SciMLBase.EnsembleProblem{SciMLBase.ODEProblem{StaticArraysCore.SVector{3, Float32}, Tuple{Float32, Float32}, false, StaticArraysCore.SVector{3, Float32}, SciMLBase.ODEFunction{false, SciMLBase.AutoSpecialize, typeof(Main.var"workspace#2".lorenz), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, @Kwargs{}, SciMLBase.StandardODEProblem}, var"#27#28"{typeof(SciMLBase.remake), StaticArraysCore.SVector{3, Float32}, DataType, typeof(*)}, typeof(SciMLBase.DEFAULT_OUTPUT_FUNC), typeof(SciMLBase.DEFAULT_REDUCTION), Nothing}, ::DiffEqGPU.GPUTsit5, ::Vararg{Any}; kwargs::@Kwargs{trajectories::Int64, dt::Float64})
@ DiffEqBase ~/.julia/packages/DiffEqBase/qvEPa/src/solve.jl:1221
[10] solve
@ ~/.julia/packages/DiffEqBase/qvEPa/src/solve.jl:1218 [inlined]
[11] ##function_wrapped_cell#823
@ ~/.julia/pluto_notebooks/Tiny magic.jl#==#42d6c72a-62d0-4f32-9b32-c373ccda448d:1 [inlined]
Environment (please complete the following information):
- Output of
using Pkg; Pkg.status()
Status `/tmp/jl_t6MjG8/Project.toml`
[052768ef] CUDA v5.8.2
[071ae1c0] DiffEqGPU v3.7.0
[1dea7af3] OrdinaryDiffEq v6.98.0
[90137ffa] StaticArrays v1.9.13
[44cfe95a] Pkg v1.11.0
- Output of
using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Status `/tmp/jl_t6MjG8/Manifest.toml`
[47edcb42] ADTypes v1.15.0
[621f4979] AbstractFFTs v1.5.0
[7d9f7c33] Accessors v0.1.42
[79e6a3ab] Adapt v4.3.0
[4fba245c] ArrayInterface v7.19.0
[4c555306] ArrayLayouts v1.11.1
[a9b6321e] Atomix v1.1.1
[ab4f0b2a] BFloat16s v0.5.1
[62783981] BitTwiddlingConvenienceFunctions v0.1.6
[70df07ce] BracketingNonlinearSolve v1.3.0
[fa961155] CEnum v0.5.0
[2a0fbf3d] CPUSummary v0.2.6
[052768ef] CUDA v5.8.2
[1af6417a] CUDA_Runtime_Discovery v0.3.5
[d360d2e6] ChainRulesCore v1.25.2
[fb6a15b2] CloseOpenIntervals v0.1.13
[3da002f7] ColorTypes v0.12.1
[5ae59095] Colors v0.13.1
[38540f10] CommonSolve v0.2.4
[bbf7d656] CommonSubexpressions v0.3.1
[f70d9fcc] CommonWorldInvalidations v1.0.0
[34da2185] Compat v4.16.0
[a33af91c] CompositionsBase v0.1.2
[2569d6c7] ConcreteStructs v0.2.3
[187b0558] ConstructionBase v1.6.0
[adafc99b] CpuId v0.3.1
[a8cc5b0e] Crayons v4.1.1
[9a962f9c] DataAPI v1.16.0
[a93c6f00] DataFrames v1.7.0
[864edb3b] DataStructures v0.18.22
[e2d170a0] DataValueInterfaces v1.0.0
[2b5f629d] DiffEqBase v6.176.0
[071ae1c0] DiffEqGPU v3.7.0
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
[a0c0ee7d] DifferentiationInterface v0.7.1
[ffbed154] DocStringExtensions v0.9.5
[4e289a0a] EnumX v1.0.5
[f151be2c] EnzymeCore v0.8.12
[d4d017d3] ExponentialUtilities v1.27.0
[e2ba6199] ExprTools v0.1.10
[55351af7] ExproniconLite v0.10.14
[7034ab61] FastBroadcast v0.3.5
[9aa1b823] FastClosures v0.3.2
[442a2c76] FastGaussQuadrature v1.0.2
[a4df4552] FastPower v1.1.3
[1a297f60] FillArrays v1.13.0
[6a86dc24] FiniteDiff v2.27.0
[53c48c17] FixedPointNumbers v0.8.5
[f6369f11] ForwardDiff v1.0.1
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
[0c68f7d7] GPUArrays v11.2.3
[46192b85] GPUArraysCore v0.2.0
[61eb1bfa] GPUCompiler v1.5.3
[096a3bc2] GPUToolbox v0.2.0
[c145ed77] GenericSchur v0.5.5
[076d061b] HashArrayMappedTries v0.2.0
[615f187c] IfElse v0.1.1
[842dd82b] InlineStrings v1.4.4
[3587e190] InverseFunctions v0.1.17
[41ab1584] InvertedIndices v1.3.1
[92d709cd] IrrationalConstants v0.2.4
[82899510] IteratorInterfaceExtensions v1.0.0
[692b3bcd] JLLWrappers v1.7.0
[ae98c720] Jieko v0.2.1
[63c18a36] KernelAbstractions v0.9.35
[ba0b0d4f] Krylov v0.10.1
[929cbde3] LLVM v9.4.2
[8b046642] LLVMLoopInfo v1.0.0
[b964fa9f] LaTeXStrings v1.4.0
[10f19ff3] LayoutPointers v0.1.17
[5078a376] LazyArrays v2.6.1
[87fe0de2] LineSearch v0.1.4
[d3d80556] LineSearches v7.4.0
[7ed4a6bd] LinearSolve v3.18.2
[2ab3a3ac] LogExpFunctions v0.3.29
[1914dd2f] MacroTools v0.5.16
[d125e4d3] ManualMemory v0.1.8
[bb5d69b7] MaybeInplace v0.1.4
[e1d29d7a] Missings v1.2.0
[2e0e35c7] Moshi v0.3.6
[46d2c3a1] MuladdMacro v0.2.4
[d41bc354] NLSolversBase v7.10.0
[5da4648a] NVTX v1.0.0
[77ba4419] NaNMath v1.1.3
[8913a72c] NonlinearSolve v4.9.0
[be0214bd] NonlinearSolveBase v1.12.0
[5959db7a] NonlinearSolveFirstOrder v1.5.0
[9a2c21bd] NonlinearSolveQuasiNewton v1.6.0
[26075421] NonlinearSolveSpectralMethods v1.2.0
[bac558e1] OrderedCollections v1.8.1
[1dea7af3] OrdinaryDiffEq v6.98.0
[89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0
[6ad6398a] OrdinaryDiffEqBDF v1.6.0
[bbf590c4] OrdinaryDiffEqCore v1.26.1
[50262376] OrdinaryDiffEqDefault v1.4.0
[4302a76b] OrdinaryDiffEqDifferentiation v1.10.0
[9286f039] OrdinaryDiffEqExplicitRK v1.1.0
[e0540318] OrdinaryDiffEqExponentialRK v1.4.0
[becaefa8] OrdinaryDiffEqExtrapolation v1.5.0
[5960d6e9] OrdinaryDiffEqFIRK v1.12.0
[101fe9f7] OrdinaryDiffEqFeagin v1.1.0
[d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
[d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
[9f002381] OrdinaryDiffEqIMEXMultistep v1.3.0
[521117fe] OrdinaryDiffEqLinear v1.3.0
[1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
[b0944070] OrdinaryDiffEqLowStorageRK v1.3.0
[127b3ac7] OrdinaryDiffEqNonlinearSolve v1.10.0
[c9986a66] OrdinaryDiffEqNordsieck v1.1.0
[5dd0a6cf] OrdinaryDiffEqPDIRK v1.3.1
[5b33eab2] OrdinaryDiffEqPRK v1.1.0
[04162be5] OrdinaryDiffEqQPRK v1.1.0
[af6ede74] OrdinaryDiffEqRKN v1.1.0
[43230ef6] OrdinaryDiffEqRosenbrock v1.11.0
[2d112036] OrdinaryDiffEqSDIRK v1.3.0
[669c94d9] OrdinaryDiffEqSSPRK v1.3.0
[e3e12d00] OrdinaryDiffEqStabilizedIRK v1.3.0
[358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
[fa646aed] OrdinaryDiffEqSymplecticRK v1.3.0
[b1df2697] OrdinaryDiffEqTsit5 v1.1.0
[79d7bb75] OrdinaryDiffEqVerner v1.2.0
[d96e819e] Parameters v0.12.3
[f517fe37] Polyester v0.7.18
[1d0040c9] PolyesterWeave v0.2.2
[2dfb63ee] PooledArrays v1.4.3
[d236fae5] PreallocationTools v0.4.27
⌅ [aea7be01] PrecompileTools v1.2.1
[21216c6a] Preferences v1.4.3
[08abe8d2] PrettyTables v2.4.0
[74087812] Random123 v1.7.1
[e6cf234a] RandomNumbers v1.6.0
[3cdcf5f2] RecipesBase v1.3.4
[731186ca] RecursiveArrayTools v3.33.0
[189a3867] Reexport v1.2.2
[ae029012] Requires v1.3.1
[7e49a35a] RuntimeGeneratedFunctions v0.5.15
[94e857df] SIMDTypes v0.1.0
[0bca4576] SciMLBase v2.102.1
[19f34311] SciMLJacobianOperators v0.1.6
[c0aeaf25] SciMLOperators v1.3.1
[53ae85a6] SciMLStructures v1.7.0
[7e506255] ScopedValues v1.3.0
[6c6a2e73] Scratch v1.3.0
[91c51154] SentinelArrays v1.4.8
[efcf1570] Setfield v1.1.2
[05bca326] SimpleDiffEq v1.12.0
[727e6d20] SimpleNonlinearSolve v2.5.0
[ce78b400] SimpleUnPack v1.1.0
[a2af1166] SortingAlgorithms v1.2.1
[0a514795] SparseMatrixColorings v0.4.21
[276daf66] SpecialFunctions v2.5.1
[aedffcd0] Static v1.2.0
[0d7ed370] StaticArrayInterface v1.8.0
[90137ffa] StaticArrays v1.9.13
[1e83bf80] StaticArraysCore v1.4.3
[10745b16] Statistics v1.11.1
[7792a7ef] StrideArraysCore v0.5.7
[892a3eda] StringManipulation v0.4.1
[2efcf032] SymbolicIndexingInterface v0.3.41
[3783bdb8] TableTraits v1.0.1
[bd369af6] Tables v1.12.1
[8290d209] ThreadingUtilities v0.5.5
[a759f4b9] TimerOutputs v0.5.29
[e689c965] Tracy v0.1.4
[781d530d] TruncatedStacktraces v1.4.0
[3a884ed6] UnPack v1.0.2
[013be700] UnsafeAtomics v0.3.0
[700de1a5] ZygoteRules v0.2.7
⌅ [4ee394cb] CUDA_Driver_jll v0.13.1+0
⌅ [76a88914] CUDA_Runtime_jll v0.17.1+0
[1d5cc7b8] IntelOpenMP_jll v2025.0.4+0
[9c1d0b0a] JuliaNVTXCallbacks_jll v0.2.1+0
[dad2f222] LLVMExtra_jll v0.0.37+2
[ad6e5548] LibTracyClient_jll v0.9.1+6
[856f044c] MKL_jll v2025.0.1+1
[e98f9f5b] NVTX_jll v3.2.1+0
[efe28fd5] OpenSpecFun_jll v0.5.6+0
[1e29f10c] demumble_jll v1.3.0+0
[1317d2d5] oneTBB_jll v2022.0.0+0
[0dad84c5] ArgTools v1.1.2
[56f22d72] Artifacts v1.11.0
[2a0f44e3] Base64 v1.11.0
[ade2ca70] Dates v1.11.0
[8ba89e20] Distributed v1.11.0
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching v1.11.0
[9fa8497b] Future v1.11.0
[b77e0a4c] InteractiveUtils v1.11.0
[4af54fe1] LazyArtifacts v1.11.0
[b27032c2] LibCURL v0.6.4
[76f85450] LibGit2 v1.11.0
[8f399da3] Libdl v1.11.0
[37e2e46d] LinearAlgebra v1.11.0
[56ddb016] Logging v1.11.0
[d6f4376e] Markdown v1.11.0
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.11.0
[de0858da] Printf v1.11.0
[9a3f8284] Random v1.11.0
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization v1.11.0
[6462fe0b] Sockets v1.11.0
[2f01184e] SparseArrays v1.11.0
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[cf7118a7] UUIDs v1.11.0
[4ec0a83e] Unicode v1.11.0
[e66e0078] CompilerSupportLibraries_jll v1.1.1+0
[deac9b47] LibCURL_jll v8.6.0+0
[e37daf67] LibGit2_jll v1.7.2+0
[29816b5a] LibSSH2_jll v1.11.0+1
[c8ffd9c3] MbedTLS_jll v2.28.6+0
[14a3606d] MozillaCACerts_jll v2023.12.12
[4536629a] OpenBLAS_jll v0.3.27+1
[05823500] OpenLibm_jll v0.8.5+0
[bea87d4a] SuiteSparse_jll v7.7.0+0
[83775a58] Zlib_jll v1.2.13+1
[8e850b90] libblastrampoline_jll v5.11.0+0
[8e850ede] nghttp2_jll v1.59.0+0
[3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m`
- Output of
versioninfo()
Julia Version 1.11.5
Commit 760b2e5b739 (2025-04-14 06:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 16 × AMD Ryzen 7 7840HS w/ Radeon 780M Graphics
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver4)
Threads: 8 default, 0 interactive, 4 GC (on 16 virtual cores)
Environment:
JULIA_REVISE_WORKER_ONLY = 1
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working