Skip to content

Commit 82b34f3

Browse files
Merge pull request #1307 from ChrisRackauckas/fix-formatting
Apply JuliaFormatter to fix code formatting
2 parents 2e61b98 + ea6e32c commit 82b34f3

File tree

102 files changed

+12299
-10367
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

102 files changed

+12299
-10367
lines changed

.JuliaFormatter.toml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
style = "sciml"
2+
format_markdown = true
3+
format_docstrings = true

.github/workflows/update.jl

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -5,21 +5,22 @@ using Git, GitHub, Dates
55
gh_token = ARGS[1]
66
myauth = GitHub.authenticate(gh_token)
77

8-
(@isdefined myauth) ? @info("Authentication token is found...") : @info("Coudn't find the authentication token")
8+
(@isdefined myauth) ? @info("Authentication token is found...") :
9+
@info("Coudn't find the authentication token")
910

1011
const git = Git.git()
1112
date = Dates.format(now(), "yyyy-mm-dd")
1213
benchpath = joinpath(@__DIR__, "..", "..", "benchmarks")
1314

1415
# Get all the open PRs and their number
15-
gh_prs = GitHub.pull_requests("SciML/SciMLBenchmarks.jl"; auth=myauth)
16+
gh_prs = GitHub.pull_requests("SciML/SciMLBenchmarks.jl"; auth = myauth)
1617
prs = Dict{String, Int64}()
1718
for i in 1:length(gh_prs[1])
1819
prs[gh_prs[1][i].head.ref] = gh_prs[1][i].number
1920
end
2021

2122
# Get all the branches from the repo
22-
gh_branches = GitHub.branches("SciML/SciMLBenchmarks.jl"; auth=myauth)
23+
gh_branches = GitHub.branches("SciML/SciMLBenchmarks.jl"; auth = myauth)
2324
branches = [gh_branches[1][i].name for i in 1:length(gh_branches[1])]
2425

2526
@info("PRs and branches", prs, branches)
@@ -50,14 +51,14 @@ for dir in readdir(benchpath)
5051
if dir keys(prs)
5152
params = Dict(
5253
"title" => "Updated $(dir) for benchmarks",
53-
"head" => "$(dir)",
54-
"base" => "master"
54+
"head" => "$(dir)",
55+
"base" => "master"
5556
)
56-
@info("Creating a pull request from head: ", dir)
57-
GitHub.create_pull_request("SciML/SciMLBenchmarks.jl"; params=params, auth=myauth)
57+
@info("Creating a pull request from head: ", dir)
58+
GitHub.create_pull_request("SciML/SciMLBenchmarks.jl"; params = params, auth = myauth)
5859
else
5960
@info("Updating the pull request numbered: ", prs[dir])
60-
GitHub.update_pull_request("SciML/SciMLBenchmarks.jl", prs[dir]; auth=myauth)
61+
GitHub.update_pull_request("SciML/SciMLBenchmarks.jl", prs[dir]; auth = myauth)
6162
end
6263
end
6364
end

benchmarks/AdaptiveSDE/AdaptiveEfficiencyTests.jmd

Lines changed: 129 additions & 104 deletions
Original file line numberDiff line numberDiff line change
@@ -8,138 +8,163 @@ author: Chris Rackauckas
88
using Distributed
99
addprocs(2)
1010

11-
p1 = Vector{Any}(undef,3)
12-
p2 = Vector{Any}(undef,3)
13-
p3 = Vector{Any}(undef,3)
11+
p1 = Vector{Any}(undef, 3)
12+
p2 = Vector{Any}(undef, 3)
13+
p3 = Vector{Any}(undef, 3)
1414

1515
@everywhere begin
16-
using StochasticDiffEq, SDEProblemLibrary, DiffEqNoiseProcess, Plots, ParallelDataTransfer
17-
import SDEProblemLibrary: prob_sde_additive,
18-
prob_sde_linear, prob_sde_wave
16+
using StochasticDiffEq, SDEProblemLibrary, DiffEqNoiseProcess, Plots,
17+
ParallelDataTransfer
18+
import SDEProblemLibrary: prob_sde_additive,
19+
prob_sde_linear, prob_sde_wave
1920
end
2021

2122
using StochasticDiffEq, SDEProblemLibrary, DiffEqNoiseProcess, Plots, ParallelDataTransfer
2223
import SDEProblemLibrary: prob_sde_additive,
23-
prob_sde_linear, prob_sde_wave
24+
prob_sde_linear, prob_sde_wave
2425

25-
probs = Matrix{SDEProblem}(undef,3,3)
26+
probs = Matrix{SDEProblem}(undef, 3, 3)
2627
## Problem 1
2728
prob = prob_sde_linear
28-
probs[1,1] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM1)))
29-
probs[1,2] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM2)))
30-
probs[1,3] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM3)))
29+
probs[1, 1] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
30+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM1)))
31+
probs[1, 2] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
32+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM2)))
33+
probs[1, 3] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
34+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM3)))
3135
## Problem 2
3236
prob = prob_sde_wave
33-
probs[2,1] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM1)))
34-
probs[2,2] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM2)))
35-
probs[2,3] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM3)))
37+
probs[2, 1] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
38+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM1)))
39+
probs[2, 2] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
40+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM2)))
41+
probs[2, 3] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
42+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM3)))
3643
## Problem 3
3744
prob = prob_sde_additive
38-
probs[3,1] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM1)))
39-
probs[3,2] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM2)))
40-
probs[3,3] = SDEProblem(prob.f,prob.g,prob.u0,prob.tspan,prob.p,noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=:RSwM3)))
41-
42-
fullMeans = Vector{Array}(undef,3)
43-
fullMedians = Vector{Array}(undef,3)
44-
fullElapsed = Vector{Array}(undef,3)
45-
fullTols = Vector{Array}(undef,3)
45+
probs[3, 1] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
46+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM1)))
47+
probs[3, 2] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
48+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM2)))
49+
probs[3, 3] = SDEProblem(prob.f, prob.g, prob.u0, prob.tspan, prob.p,
50+
noise = WienerProcess(0.0, 0.0, 0.0, rswm = RSWM(adaptivealg = :RSwM3)))
51+
52+
fullMeans = Vector{Array}(undef, 3)
53+
fullMedians = Vector{Array}(undef, 3)
54+
fullElapsed = Vector{Array}(undef, 3)
55+
fullTols = Vector{Array}(undef, 3)
4656
offset = 0
4757

48-
Ns = [17,23,
49-
17]
58+
Ns = [17, 23,
59+
17]
5060
```
5161

5262
Timings are only valid if no workers die. Workers die if you run out of memory.
5363

5464
```julia
55-
for k in 1:size(probs,1)
56-
global probs, Ns, fullMeans, fullMedians, fullElapsed, fullTols
57-
println("Problem $k")
58-
## Setup
59-
N = Ns[k]
60-
61-
msims = Vector{Any}(undef,N)
62-
elapsed = Array{Float64}(undef,N,3)
63-
medians = Array{Float64}(undef,N,3)
64-
means = Array{Float64}(undef,N,3)
65-
tols = Array{Float64}(undef,N,3)
66-
67-
#Compile
68-
prob = probs[k,1]
69-
ParallelDataTransfer.sendto(workers(), prob=prob)
70-
monte_prob = EnsembleProblem(prob)
71-
solve(monte_prob,SRIW1(),dt=1/2^(4),adaptive=true,trajectories=1000,abstol=2.0^(-1),reltol=0)
72-
73-
println("RSwM1")
74-
for i=1+offset:N+offset
75-
tols[i-offset,1] = 2.0^(-i-1)
76-
msims[i-offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob,SRIW1(),
77-
trajectories=1000,abstol=2.0^(-i-1),
78-
reltol=0,force_dtmin=true))
79-
elapsed[i-offset,1] = msims[i-offset].elapsedTime
80-
medians[i-offset,1] = msims[i-offset].error_medians[:final]
81-
means[i-offset,1] = msims[i-offset].error_means[:final]
82-
end
83-
84-
println("RSwM2")
85-
prob = probs[k,2]
86-
87-
ParallelDataTransfer.sendto(workers(), prob=prob)
88-
monte_prob = EnsembleProblem(prob)
89-
solve(monte_prob,SRIW1(),dt=1/2^(4),adaptive=true,trajectories=1000,abstol=2.0^(-1),reltol=0)
90-
91-
for i=1+offset:N+offset
92-
tols[i-offset,2] = 2.0^(-i-1)
93-
msims[i-offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob,SRIW1(),
94-
trajectories=1000,abstol=2.0^(-i-1),
95-
reltol=0,force_dtmin=true))
96-
elapsed[i-offset,2] = msims[i-offset].elapsedTime
97-
medians[i-offset,2] = msims[i-offset].error_medians[:final]
98-
means[i-offset,2] = msims[i-offset].error_means[:final]
99-
end
100-
101-
println("RSwM3")
102-
prob = probs[k,3]
103-
ParallelDataTransfer.sendto(workers(), prob=prob)
104-
monte_prob = EnsembleProblem(prob)
105-
solve(monte_prob,SRIW1(),dt=1/2^(4),adaptive=true,trajectories=1000,abstol=2.0^(-1),reltol=0)
106-
107-
for i=1+offset:N+offset
108-
tols[i-offset,3] = 2.0^(-i-1)
109-
msims[i-offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob,SRIW1(),
110-
adaptive=true,trajectories=1000,abstol=2.0^(-i-1),
111-
reltol=0,force_dtmin=true))
112-
elapsed[i-offset,3] = msims[i-offset].elapsedTime
113-
medians[i-offset,3] = msims[i-offset].error_medians[:final]
114-
means[i-offset,3] = msims[i-offset].error_means[:final]
115-
end
116-
117-
fullMeans[k] = means
118-
fullMedians[k] =medians
119-
fullElapsed[k] = elapsed
120-
fullTols[k] = tols
65+
for k in 1:size(probs, 1)
66+
global probs, Ns, fullMeans, fullMedians, fullElapsed, fullTols
67+
println("Problem $k")
68+
## Setup
69+
N = Ns[k]
70+
71+
msims = Vector{Any}(undef, N)
72+
elapsed = Array{Float64}(undef, N, 3)
73+
medians = Array{Float64}(undef, N, 3)
74+
means = Array{Float64}(undef, N, 3)
75+
tols = Array{Float64}(undef, N, 3)
76+
77+
#Compile
78+
prob = probs[k, 1]
79+
ParallelDataTransfer.sendto(workers(), prob = prob)
80+
monte_prob = EnsembleProblem(prob)
81+
solve(monte_prob, SRIW1(), dt = 1/2^(4), adaptive = true,
82+
trajectories = 1000, abstol = 2.0^(-1), reltol = 0)
83+
84+
println("RSwM1")
85+
for i in (1 + offset):(N + offset)
86+
tols[i - offset, 1] = 2.0^(-i-1)
87+
msims[i - offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob, SRIW1(),
88+
trajectories = 1000, abstol = 2.0^(-i-1),
89+
reltol = 0, force_dtmin = true))
90+
elapsed[i - offset, 1] = msims[i - offset].elapsedTime
91+
medians[i - offset, 1] = msims[i - offset].error_medians[:final]
92+
means[i - offset, 1] = msims[i - offset].error_means[:final]
93+
end
94+
95+
println("RSwM2")
96+
prob = probs[k, 2]
97+
98+
ParallelDataTransfer.sendto(workers(), prob = prob)
99+
monte_prob = EnsembleProblem(prob)
100+
solve(monte_prob, SRIW1(), dt = 1/2^(4), adaptive = true,
101+
trajectories = 1000, abstol = 2.0^(-1), reltol = 0)
102+
103+
for i in (1 + offset):(N + offset)
104+
tols[i - offset, 2] = 2.0^(-i-1)
105+
msims[i - offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob, SRIW1(),
106+
trajectories = 1000, abstol = 2.0^(-i-1),
107+
reltol = 0, force_dtmin = true))
108+
elapsed[i - offset, 2] = msims[i - offset].elapsedTime
109+
medians[i - offset, 2] = msims[i - offset].error_medians[:final]
110+
means[i - offset, 2] = msims[i - offset].error_means[:final]
111+
end
112+
113+
println("RSwM3")
114+
prob = probs[k, 3]
115+
ParallelDataTransfer.sendto(workers(), prob = prob)
116+
monte_prob = EnsembleProblem(prob)
117+
solve(monte_prob, SRIW1(), dt = 1/2^(4), adaptive = true,
118+
trajectories = 1000, abstol = 2.0^(-1), reltol = 0)
119+
120+
for i in (1 + offset):(N + offset)
121+
tols[i - offset, 3] = 2.0^(-i-1)
122+
msims[i - offset] = DiffEqBase.calculate_monte_errors(solve(monte_prob, SRIW1(),
123+
adaptive = true, trajectories = 1000, abstol = 2.0^(-i-1),
124+
reltol = 0, force_dtmin = true))
125+
elapsed[i - offset, 3] = msims[i - offset].elapsedTime
126+
medians[i - offset, 3] = msims[i - offset].error_medians[:final]
127+
means[i - offset, 3] = msims[i - offset].error_means[:final]
128+
end
129+
130+
fullMeans[k] = means
131+
fullMedians[k] = medians
132+
fullElapsed[k] = elapsed
133+
fullTols[k] = tols
121134
end
122135
```
123136

124137
```julia
125-
gr(fmt=:svg)
138+
gr(fmt = :svg)
126139
lw=3
127-
leg=String["RSwM1","RSwM2","RSwM3"]
140+
leg=String["RSwM1", "RSwM2", "RSwM3"]
128141

129142
titleFontSize = 16
130143
guideFontSize = 14
131-
legendFontSize= 14
132-
tickFontSize = 12
133-
134-
for k in 1:size(probs,1)
135-
global probs, Ns, fullMeans, fullMedians, fullElapsed, fullTols
136-
p1[k] = Plots.plot(fullTols[k],fullMeans[k],xscale=:log10,yscale=:log10, xguide="Absolute Tolerance",yguide="Mean Final Error",title="Example $k" ,linewidth=lw,grid=false,lab=leg,titlefont=font(titleFontSize),legendfont=font(legendFontSize),tickfont=font(tickFontSize),guidefont=font(guideFontSize))
137-
p2[k] = Plots.plot(fullTols[k],fullMedians[k],xscale=:log10,yscale=:log10,xguide="Absolute Tolerance",yguide="Median Final Error",title="Example $k",linewidth=lw,grid=false,lab=leg,titlefont=font(titleFontSize),legendfont=font(legendFontSize),tickfont=font(tickFontSize),guidefont=font(guideFontSize))
138-
p3[k] = Plots.plot(fullTols[k],fullElapsed[k],xscale=:log10,yscale=:log10,xguide="Absolute Tolerance",yguide="Elapsed Time",title="Example $k" ,linewidth=lw,grid=false,lab=leg,titlefont=font(titleFontSize),legendfont=font(legendFontSize),tickfont=font(tickFontSize),guidefont=font(guideFontSize))
144+
legendFontSize = 14
145+
tickFontSize = 12
146+
147+
for k in 1:size(probs, 1)
148+
global probs, Ns, fullMeans, fullMedians, fullElapsed, fullTols
149+
p1[k] = Plots.plot(fullTols[k], fullMeans[k], xscale = :log10, yscale = :log10,
150+
xguide = "Absolute Tolerance", yguide = "Mean Final Error",
151+
title = "Example $k", linewidth = lw, grid = false, lab = leg,
152+
titlefont = font(titleFontSize), legendfont = font(legendFontSize),
153+
tickfont = font(tickFontSize), guidefont = font(guideFontSize))
154+
p2[k] = Plots.plot(fullTols[k], fullMedians[k], xscale = :log10, yscale = :log10,
155+
xguide = "Absolute Tolerance", yguide = "Median Final Error",
156+
title = "Example $k", linewidth = lw, grid = false, lab = leg,
157+
titlefont = font(titleFontSize), legendfont = font(legendFontSize),
158+
tickfont = font(tickFontSize), guidefont = font(guideFontSize))
159+
p3[k] = Plots.plot(fullTols[k], fullElapsed[k], xscale = :log10, yscale = :log10,
160+
xguide = "Absolute Tolerance", yguide = "Elapsed Time",
161+
title = "Example $k", linewidth = lw, grid = false, lab = leg,
162+
titlefont = font(titleFontSize), legendfont = font(legendFontSize),
163+
tickfont = font(tickFontSize), guidefont = font(guideFontSize))
139164
end
140165

141166
Plots.plot!(p1[1])
142-
Plots.plot(p1[1],p1[2],p1[3],layout=(3,1),size=(1000,800))
167+
Plots.plot(p1[1], p1[2], p1[3], layout = (3, 1), size = (1000, 800))
143168
```
144169

145170
```julia
@@ -148,17 +173,17 @@ Plots.plot(p1[1],p1[2],p1[3],layout=(3,1),size=(1000,800))
148173
```
149174

150175
```julia
151-
plot(p3[1],p3[2],p3[3],layout=(3,1),size=(1000,800))
176+
plot(p3[1], p3[2], p3[3], layout = (3, 1), size = (1000, 800))
152177
#savefig("timevstol.png")
153178
#savefig("timevstol.pdf")
154179
```
155180

156181
```julia
157-
plot(p1[1],p3[1],p1[2],p3[2],p1[3],p3[3],layout=(3,2),size=(1000,800))
182+
plot(p1[1], p3[1], p1[2], p3[2], p1[3], p3[3], layout = (3, 2), size = (1000, 800))
158183
```
159184

160185
```julia
161186

162187
using SciMLBenchmarks
163-
SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
188+
SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder], WEAVE_ARGS[:file])
164189
```

0 commit comments

Comments
 (0)