|
27 | 27 | "metadata": {},
|
28 | 28 | "outputs": [],
|
29 | 29 | "source": [
|
| 30 | + "import json\n", |
30 | 31 | "import numpy as np\n",
|
31 | 32 | "import pandas as pd\n",
|
32 | 33 | "import seaborn as sns\n",
|
|
242 | 243 | "plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n",
|
243 | 244 | "plt.show()"
|
244 | 245 | ]
|
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "markdown", |
| 249 | + "metadata": {}, |
| 250 | + "source": [ |
| 251 | + "Save to JSON file" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "code", |
| 256 | + "execution_count": null, |
| 257 | + "metadata": {}, |
| 258 | + "outputs": [], |
| 259 | + "source": [ |
| 260 | + "with open('bart.json', 'w') as f:\n", |
| 261 | + " bart_json_python = json.loads(bart_json_string)\n", |
| 262 | + " json.dump(bart_json_python, f)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "markdown", |
| 267 | + "metadata": {}, |
| 268 | + "source": [ |
| 269 | + "Reload from JSON file" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": null, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
| 277 | + "source": [ |
| 278 | + "with open('bart.json', 'r') as f:\n", |
| 279 | + " bart_json_python_reload = json.load(f)\n", |
| 280 | + "bart_json_string_reload = json.dumps(bart_json_python_reload)\n", |
| 281 | + "bart_model_file_deserialized = BARTModel()\n", |
| 282 | + "bart_model_file_deserialized.from_json(bart_json_string_reload)" |
| 283 | + ] |
| 284 | + }, |
| 285 | + { |
| 286 | + "cell_type": "markdown", |
| 287 | + "metadata": {}, |
| 288 | + "source": [ |
| 289 | + "Compare predictions" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "code", |
| 294 | + "execution_count": null, |
| 295 | + "metadata": {}, |
| 296 | + "outputs": [], |
| 297 | + "source": [ |
| 298 | + "y_hat_file_deserialized = bart_model_file_deserialized.predict(X_test, basis_test)\n", |
| 299 | + "y_avg_mcmc_file_deserialized = np.squeeze(y_hat_file_deserialized).mean(axis = 1, keepdims = True)\n", |
| 300 | + "y_df = pd.DataFrame(np.concatenate((y_avg_mcmc, y_avg_mcmc_file_deserialized), axis = 1), columns=[\"Original model\", \"Deserialized model\"])\n", |
| 301 | + "sns.scatterplot(data=y_df, x=\"Original model\", y=\"Deserialized model\")\n", |
| 302 | + "plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n", |
| 303 | + "plt.show()" |
| 304 | + ] |
| 305 | + }, |
| 306 | + { |
| 307 | + "cell_type": "markdown", |
| 308 | + "metadata": {}, |
| 309 | + "source": [ |
| 310 | + "Compare parameter samples" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "metadata": {}, |
| 317 | + "outputs": [], |
| 318 | + "source": [ |
| 319 | + "sigma2_df = pd.DataFrame(np.c_[bart_model.global_var_samples, bart_model_file_deserialized.global_var_samples], columns=[\"Original model\", \"Deserialized model\"])\n", |
| 320 | + "sns.scatterplot(data=sigma2_df, x=\"Original model\", y=\"Deserialized model\")\n", |
| 321 | + "plt.axline((0, 0), slope=1, color=\"black\", linestyle=(0, (3,3)))\n", |
| 322 | + "plt.show()" |
| 323 | + ] |
245 | 324 | }
|
246 | 325 | ],
|
247 | 326 | "metadata": {
|
|
0 commit comments