You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Minimum allowable size of a leaf, in terms of training samples. Defaults to ``5``.
61
61
max_depth : :obj:`int`, optional
62
62
Maximum depth of any tree in the ensemble. Defaults to ``10``. Can be overriden with ``-1`` which does not enforce any depth limits on trees.
63
-
nu : :obj:`float`, optional
64
-
Shape parameter in the ``IG(nu, nu*lamb)`` global error variance model. Defaults to ``3``.
65
-
lamb : :obj:`float`, optional
66
-
Component of the scale parameter in the ``IG(nu, nu*lambda)`` global error variance prior. If not specified, this is calibrated as in Sparapani et al (2021).
63
+
a_global : :obj:`float`, optional
64
+
Shape parameter in the ``IG(a_global, b_global)`` global error variance model. Defaults to ``0``.
65
+
b_global : :obj:`float`, optional
66
+
Component of the scale parameter in the ``IG(a_global, b_global)`` global error variance prior. Defaults to ``0``.
67
67
a_leaf : :obj:`float`, optional
68
68
Shape parameter in the ``IG(a_leaf, b_leaf)`` leaf node parameter variance model. Defaults to ``3``.
69
69
b_leaf : :obj:`float`, optional
70
70
Scale parameter in the ``IG(a_leaf, b_leaf)`` leaf node parameter variance model. Calibrated internally as ``0.5/num_trees`` if not set here.
71
71
q : :obj:`float`, optional
72
72
Quantile used to calibrated ``lamb`` as in Sparapani et al (2021). Defaults to ``0.9``.
73
73
sigma2 : :obj:`float`, optional
74
-
Starting value of global variance parameter. Calibrated internally as in Sparapani et al (2021) if not set here.
74
+
Starting value of global variance parameter. Set internally as a percentage of the standardized outcome variance if not set here.
75
+
pct_var_sigma2_init : :obj:`float`, optional
76
+
Percentage of standardized outcome variance used to initialize global error variance parameter. Superseded by ``sigma2``. Defaults to ``0.25``.
75
77
num_trees : :obj:`int`, optional
76
78
Number of trees in the ensemble. Defaults to ``200``.
Number of "retained" iterations of the MCMC sampler. Defaults to ``100``. If this is set to 0, GFR (XBART) samples will be retained.
83
85
sample_sigma_global : :obj:`bool`, optional
84
-
Whether or not to update the ``sigma^2`` global error variance parameter based on ``IG(nu, nu*lambda)``. Defaults to ``True``.
86
+
Whether or not to update the ``sigma^2`` global error variance parameter based on ``IG(a_global, b_global)``. Defaults to ``True``.
85
87
sample_sigma_leaf : :obj:`bool`, optional
86
88
Whether or not to update the ``tau`` leaf scale variance parameter based on ``IG(a_leaf, b_leaf)``. Cannot (currently) be set to true if ``basis_train`` has more than one column. Defaults to ``True``.
Maximum depth of any tree in the mu ensemble. Defaults to ``10``. Can be overriden with ``-1`` which does not enforce any depth limits on trees.
94
95
max_depth_tau : :obj:`int`, optional
95
96
Maximum depth of any tree in the tau ensemble. Defaults to ``5``. Can be overriden with ``-1`` which does not enforce any depth limits on trees.
96
-
nu : :obj:`float`, optional
97
-
Shape parameter in the ``IG(nu, nu*lamb)`` global error variance model. Defaults to ``3``.
98
-
lamb : :obj:`float`, optional
99
-
Component of the scale parameter in the ``IG(nu, nu*lambda)`` global error variance prior. If not specified, this is calibrated as in Sparapani et al (2021).
97
+
a_global : :obj:`float`, optional
98
+
Shape parameter in the ``IG(a_global, b_global)`` global error variance model. Defaults to ``0``.
99
+
b_global : :obj:`float`, optional
100
+
Component of the scale parameter in the ``IG(a_global, b_global)`` global error variance prior. Defaults to ``0``.
100
101
a_leaf_mu : :obj:`float`, optional
101
102
Shape parameter in the ``IG(a_leaf, b_leaf)`` leaf node parameter variance model for the prognostic forest. Defaults to ``3``.
Quantile used to calibrated ``lamb`` as in Sparapani et al (2021). Defaults to ``0.9``.
110
111
sigma2 : :obj:`float`, optional
111
112
Starting value of global variance parameter. Calibrated internally as in Sparapani et al (2021) if not set here.
113
+
pct_var_sigma2_init : :obj:`float`, optional
114
+
Percentage of standardized outcome variance used to initialize global error variance parameter. Superseded by ``sigma2``. Defaults to ``0.25``.
112
115
variable_weights : :obj:`np.array`, optional
113
116
Numeric weights reflecting the relative probability of splitting on each variable. Does not need to sum to 1 but cannot be negative. Defaults to ``np.repeat(1/X_train.shape[1], X_train.shape[1])`` if not set here. Note that if the propensity score is included as a covariate in either forest, its weight will default to ``1/X_train.shape[1]``. A workaround if you wish to provide a custom weight for the propensity score is to include it as a column in ``X_train`` and then set ``propensity_covariate`` to ``'none'`` and adjust ``keep_vars_mu`` and ``keep_vars_tau`` accordingly.
114
117
keep_vars_mu : obj:`list` or :obj:`np.array`, optional
0 commit comments