diff --git a/tools/debug/bcf_quick.R b/tools/debug/bcf_quick.R deleted file mode 100644 index 60a40bda..00000000 --- a/tools/debug/bcf_quick.R +++ /dev/null @@ -1,53 +0,0 @@ -library(stochtree) -g <- function(x) {ifelse(x[,5]==1,2,ifelse(x[,5]==2,-1,-4))} -mu1 <- function(x) {1+g(x)+x[,1]*x[,3]} -mu2 <- function(x) {1+g(x)+6*abs(x[,3]-1)} -tau1 <- function(x) {rep(3,nrow(x))} -tau2 <- function(x) {1+2*x[,2]*x[,4]} -n <- 500 -snr <- 3 -x1 <- rnorm(n) -x2 <- rnorm(n) -x3 <- rnorm(n) -x4 <- as.numeric(rbinom(n,1,0.5)) -x5 <- as.numeric(sample(1:3,n,replace=TRUE)) -X <- cbind(x1,x2,x3,x4,x5) -p <- ncol(X) -mu_x <- mu1(X) -tau_x <- tau2(X) -pi_x <- 0.8*pnorm((3*mu_x/sd(mu_x)) - 0.5*X[,1]) + 0.05 + runif(n)/10 -Z <- rbinom(n,1,pi_x) -E_XZ <- mu_x + Z*tau_x -y <- E_XZ + rnorm(n, 0, 1)*(sd(E_XZ)/snr) -X <- as.data.frame(X) -X$x4 <- factor(X$x4, ordered = TRUE) -X$x5 <- factor(X$x5, ordered = TRUE) - -# Split data into test and train sets -test_set_pct <- 0.2 -n_test <- round(test_set_pct*n) -n_train <- n - n_test -test_inds <- sort(sample(1:n, n_test, replace = FALSE)) -train_inds <- (1:n)[!((1:n) %in% test_inds)] -X_test <- X[test_inds,] -X_train <- X[train_inds,] -pi_test <- pi_x[test_inds] -pi_train <- pi_x[train_inds] -Z_test <- Z[test_inds] -Z_train <- Z[train_inds] -y_test <- y[test_inds] -y_train <- y[train_inds] -mu_test <- mu_x[test_inds] -mu_train <- mu_x[train_inds] -tau_test <- tau_x[test_inds] -tau_train <- tau_x[train_inds] -num_gfr <- 10 -num_burnin <- 0 -num_mcmc <- 1000 -num_samples <- num_gfr + num_burnin + num_mcmc -bcf_model_warmstart <- bcf( - X_train = X_train, Z_train = Z_train, y_train = y_train, pi_train = pi_train, - X_test = X_test, Z_test = Z_test, pi_test = pi_test, num_trees_variance = 50, - num_gfr = num_gfr, num_burnin = num_burnin, num_mcmc = num_mcmc, - sample_sigma_leaf_mu = F, sample_sigma_leaf_tau = F -)