@@ -11,7 +11,7 @@ The :py:func:`aeppl.logprob.logprob` function can be called on any random variab
11
11
import aesara.tensor as at
12
12
from aeppl.logprob import _logprob
13
13
14
- srng = at.random.RandomStream(0 )
14
+ srng = at.random.RandomStream()
15
15
16
16
mu = at.scalar("mu")
17
17
sigma = at.scalar("sigma")
@@ -29,7 +29,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
29
29
30
30
import aesara.tensor as at
31
31
32
- srng = at.random.RandomStream(0 )
32
+ srng = at.random.RandomStream()
33
33
34
34
p = at.scalar("p")
35
35
x_rv = snrg.bernoulli(p)
@@ -43,7 +43,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
43
43
44
44
import aesara.tensor as at
45
45
46
- srng = at.random.RandomStream(0 )
46
+ srng = at.random.RandomStream()
47
47
48
48
a = at.scalar("a")
49
49
b = at.scalar("b")
@@ -59,7 +59,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
59
59
60
60
import aesara.tensor as at
61
61
62
- srng = at.random.RandomStream(0 )
62
+ srng = at.random.RandomStream()
63
63
64
64
n = at.iscalar("n")
65
65
a = at.scalar("a")
@@ -76,7 +76,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
76
76
77
77
import aesara.tensor as at
78
78
79
- srng = at.random.RandomStream(0 )
79
+ srng = at.random.RandomStream()
80
80
81
81
n = at.iscalar("n")
82
82
p = at.scalar("p")
@@ -92,7 +92,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
92
92
93
93
import aesara.tensor as at
94
94
95
- srng = at.random.RandomStream(0 )
95
+ srng = at.random.RandomStream()
96
96
97
97
loc = at.scalar("loc")
98
98
scale = at.scalar("scale")
@@ -107,7 +107,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
107
107
108
108
import aesara.tensor as at
109
109
110
- srng = at.random.RandomStream(0 )
110
+ srng = at.random.RandomStream()
111
111
112
112
p = at.vector("p")
113
113
x_rv = snrg.categorical(p)
@@ -121,7 +121,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
121
121
122
122
import aesara.tensor as at
123
123
124
- srng = at.random.RandomStream(0 )
124
+ srng = at.random.RandomStream()
125
125
126
126
df = at.scalar("df")
127
127
x_rv = snrg.chisquare(df)
@@ -148,7 +148,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
148
148
149
149
import aesara.tensor as at
150
150
151
- srng = at.random.RandomStream(0 )
151
+ srng = at.random.RandomStream()
152
152
153
153
alpha = at.vector("alpha")
154
154
x_rv = snrg.dirichlet(alpha)
@@ -167,7 +167,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
167
167
168
168
import aesara.tensor as at
169
169
170
- srng = at.random.RandomStream(0 )
170
+ srng = at.random.RandomStream()
171
171
172
172
beta = at.scalar("beta")
173
173
x_rv = snrg.exponential(beta)
@@ -181,7 +181,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
181
181
182
182
import aesara.tensor as at
183
183
184
- srng = at.random.RandomStream(0 )
184
+ srng = at.random.RandomStream()
185
185
186
186
alpha = at.scalar('alpha')
187
187
beta = at.scalar('beta')
@@ -196,7 +196,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
196
196
197
197
import aesara.tensor as at
198
198
199
- srng = at.random.RandomStream(0 )
199
+ srng = at.random.RandomStream()
200
200
201
201
p = at.scalar("p")
202
202
x_rv = snrg.geometric(p)
@@ -210,7 +210,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
210
210
211
211
import aesara.tensor as at
212
212
213
- srng = at.random.RandomStream(0 )
213
+ srng = at.random.RandomStream()
214
214
215
215
mu = at.scalar('mu')
216
216
beta = at.scalar('beta')
@@ -225,7 +225,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
225
225
226
226
import aesara.tensor as at
227
227
228
- srng = at.random.RandomStream(0 )
228
+ srng = at.random.RandomStream()
229
229
230
230
x0 = at.scalar('x0')
231
231
gamma = at.scalar('gamma')
@@ -240,7 +240,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
240
240
241
241
import aesara.tensor as at
242
242
243
- srng = at.random.RandomStream(0 )
243
+ srng = at.random.RandomStream()
244
244
245
245
mu = at.scalar('mu')
246
246
sigma = at.scalar('sigma')
@@ -255,7 +255,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
255
255
256
256
import aesara.tensor as at
257
257
258
- srng = at.random.RandomStream(0 )
258
+ srng = at.random.RandomStream()
259
259
260
260
ngood = at.scalar("ngood")
261
261
nbad = at.scalar("nbad")
@@ -271,7 +271,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
271
271
272
272
import aesara.tensor as at
273
273
274
- srng = at.random.RandomStream(0 )
274
+ srng = at.random.RandomStream()
275
275
276
276
alpha = at.scalar('alpha')
277
277
beta = at.scalar('beta')
@@ -286,7 +286,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
286
286
287
287
import aesara.tensor as at
288
288
289
- srng = at.random.RandomStream(0 )
289
+ srng = at.random.RandomStream()
290
290
291
291
mu = at.scalar("mu")
292
292
lmbda = at.scalar("lambda")
@@ -301,7 +301,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
301
301
302
302
import aesara.tensor as at
303
303
304
- srng = at.random.RandomStream(0 )
304
+ srng = at.random.RandomStream()
305
305
306
306
mu = at.scalar("mu")
307
307
s = at.scalar("s")
@@ -316,7 +316,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
316
316
317
317
import aesara.tensor as at
318
318
319
- srng = at.random.RandomStream(0 )
319
+ srng = at.random.RandomStream()
320
320
321
321
mu = at.scalar("mu")
322
322
sigma = at.scalar("sigma")
@@ -331,7 +331,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
331
331
332
332
import aesara.tensor as at
333
333
334
- srng = at.random.RandomStream(0 )
334
+ srng = at.random.RandomStream()
335
335
336
336
n = at.iscalar("n")
337
337
p = at.vector("p")
@@ -346,7 +346,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
346
346
347
347
import aesara.tensor as at
348
348
349
- srng = at.random.RandomStream(0 )
349
+ srng = at.random.RandomStream()
350
350
351
351
mu = at.vector('mu')
352
352
Sigma = at.matrix('sigma')
@@ -362,7 +362,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
362
362
363
363
import aesara.tensor as at
364
364
365
- srng = at.random.RandomStream(0 )
365
+ srng = at.random.RandomStream()
366
366
367
367
n = at.iscalar("n")
368
368
p = at.scalar("p")
@@ -377,7 +377,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
377
377
378
378
import aesara.tensor as at
379
379
380
- srng = at.random.RandomStream(0 )
380
+ srng = at.random.RandomStream()
381
381
382
382
mu = at.scalar('mu')
383
383
sigma = at.scalar('sigma')
@@ -392,7 +392,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
392
392
393
393
import aesara.tensor as at
394
394
395
- srng = at.random.RandomStream(0 )
395
+ srng = at.random.RandomStream()
396
396
397
397
b = at.scalar("b")
398
398
scale = at.scalar("scale")
@@ -407,7 +407,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
407
407
408
408
import aesara.tensor as at
409
409
410
- srng = at.random.RandomStream(0 )
410
+ srng = at.random.RandomStream()
411
411
412
412
lmbda = at.scalar("lambda")
413
413
x_rv = snrg.poisson(lmbda)
@@ -421,7 +421,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
421
421
422
422
import aesara.tensor as at
423
423
424
- srng = at.random.RandomStream(0 )
424
+ srng = at.random.RandomStream()
425
425
426
426
df = at.scalar('df')
427
427
loc = at.scalar('loc')
@@ -437,7 +437,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
437
437
438
438
import aesara.tensor as at
439
439
440
- srng = at.random.RandomStream(0 )
440
+ srng = at.random.RandomStream()
441
441
442
442
left = at.scalar('left')
443
443
mode = at.scalar('mode')
@@ -453,7 +453,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
453
453
454
454
import aesara.tensor as at
455
455
456
- srng = at.random.RandomStream(0 )
456
+ srng = at.random.RandomStream()
457
457
458
458
low = at.scalar('low')
459
459
high = at.scalar('high')
@@ -468,7 +468,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
468
468
469
469
import aesara.tensor as at
470
470
471
- srng = at.random.RandomStream(0 )
471
+ srng = at.random.RandomStream()
472
472
473
473
mu = at.scalar('mu')
474
474
kappa = at.scalar('kappa')
@@ -483,7 +483,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
483
483
484
484
import aesara.tensor as at
485
485
486
- srng = at.random.RandomStream(0 )
486
+ srng = at.random.RandomStream()
487
487
488
488
mu = at.scalar('mu')
489
489
lmbda = at.scalar('lambda')
@@ -499,7 +499,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
499
499
500
500
import aesara.tensor as at
501
501
502
- srng = at.random.RandomStream(0 )
502
+ srng = at.random.RandomStream()
503
503
504
504
k = at.scalar('k')
505
505
x_rv = srng.weibull(k)
0 commit comments