-
Notifications
You must be signed in to change notification settings - Fork 60
Description
Search before asking
- I had searched in the feature and found no similar feature requirement.
Feature Description (功能描述)
Issue:
File Path: .\incubator-hugegraph-ai\hugegraph-llm\src\hugegraph_llm\resources\demo\config_prompt.yaml
I have tested the current prompt against the following Large Language Models:
API:
- GPT 4o mini
- o3-mini
Local/Ollama:- tom_himanen/deepseek-r1-roo-cline-tools:1.5b
- tom_himanen/deepseek-r1-roo-cline-tools:7b
- deepseek-r1:7b
- qwen2.5-coder:1.5b-base
- DEEPSEEk-coder-v2:16b
- deepseek-r1:14b
The results after testing were very poor.
The prompt does not clearly define the format requirements as per Apache Gremlin's documentation and can be made better through further testing and more prompt engineering.
Example of outputs generated by the current prompt file:
"vertices": [
{
"id": "1:person",
"label": "person",
"type": "vertex",
"properties": {
"name": "Sarah",
"age": "30",
"occupation": "attorney"
}
},
{
"id": "1:webpage",
"label": "webpage",
"type": "vertex",
"properties": {
"name": "www.sarahsplace.com",
"url": "None"
}
}
],
"edges": [
{
"label": "roommate",
"type": "edge",
"outV": "1:person",
"outVLabel": "person",
"inV": "1:webpage",
"inVLabel": "webpage",
"properties": {
"date": "2010"
}
}
]
}
Why are these results incorrect (after numerous tests)?
Errors related to missing keywords like "vertices", "edges", "edgelabels", "vertexlabels", "propertykeys", missing IDs, incorrect ID sequencing, missing "source_label" and "target_label", and other syntax errors.
Expected syntax example for reference:
{
"vertices": [
{
"id": "2:lop",
"label": "software",
"type": "vertex",
"properties": {
"name": "lop",
"lang": "java",
"price": 328
}
},
{
"id": "1:josh",
"label": "person",
"type": "vertex",
"properties": {
"name": "josh",
"age": 32,
"city": "Beijing"
}
},
{
"id": "1:marko",
"label": "person",
"type": "vertex",
"properties": {
"name": "marko",
"age": 29,
"city": "Beijing"
}
},
{
"id": "1:peter",
"label": "person",
"type": "vertex",
"properties": {
"name": "peter",
"age": 35,
"city": "Shanghai"
}
},
{
"id": "1:vadas",
"label": "person",
"type": "vertex",
"properties": {
"name": "vadas",
"age": 27,
"city": "Hongkong"
}
},
{
"id": "2:ripple",
"label": "software",
"type": "vertex",
"properties": {
"name": "ripple",
"lang": "java",
"price": 199
}
}
],
"edges": [
{
"id": "S1:josh>2>2>>S2:lop",
"label": "created",
"type": "edge",
"outV": "1:josh",
"outVLabel": "person",
"inV": "2:lop",
"inVLabel": "software",
"properties": {
"weight": 0.4,
"date": "20091111"
}
},
{
"id": "S1:josh>2>2>>S2:ripple",
"label": "created",
"type": "edge",
"outV": "1:josh",
"outVLabel": "person",
"inV": "2:ripple",
"inVLabel": "software",
"properties": {
"weight": 1,
"date": "20171210"
}
},
{
"id": "S1:marko>1>1>>S1:josh",
"label": "knows",
"type": "edge",
"outV": "1:marko",
"outVLabel": "person",
"inV": "1:josh",
"inVLabel": "person",
"properties": {
"weight": 1,
"date": "20130220"
}
},
{
"id": "S1:marko>1>1>>S1:vadas",
"label": "knows",
"type": "edge",
"outV": "1:marko",
"outVLabel": "person",
"inV": "1:vadas",
"inVLabel": "person",
"properties": {
"weight": 0.5,
"date": "20160110"
}
},
{
"id": "S1:marko>2>2>>S2:lop",
"label": "created",
"type": "edge",
"outV": "1:marko",
"outVLabel": "person",
"inV": "2:lop",
"inVLabel": "software",
"properties": {
"weight": 0.4,
"date": "20171210"
}
},
{
"id": "S1:peter>2>2>>S2:lop",
"label": "created",
"type": "edge",
"outV": "1:peter",
"outVLabel": "person",
"inV": "2:lop",
"inVLabel": "software",
"properties": {
"weight": 0.2,
"date": "20170324"
}
}
],
"schema": {
"vertexlabels": [
{
"id": 1,
"name": "person",
"id_strategy": "PRIMARY_KEY",
"primary_keys": [
"name"
],
"properties": [
"name",
"age",
"occupation"
],
"nullable_keys": [
"age",
"occupation"
]
},
{
"id": 2,
"name": "webpage",
"id_strategy": "PRIMARY_KEY",
"primary_keys": [
"name"
],
"properties": [
"name",
"url"
],
"nullable_keys": [
"url"
]
}
],
"edgelabels": [
{
"id": 1,
"name": "roommate",
"source_label": "person",
"target_label": "person",
"properties": [
"date"
]
},
{
"id": 2,
"name": "link",
"source_label": "webpage",
"target_label": "person",
"properties": []
}
],
"propertykeys": [
{
"name": "name",
"data_type": "TEXT",
"cardinality": "SINGLE"
},
{
"name": "age",
"data_type": "TEXT",
"cardinality": "SINGLE"
},
{
"name": "occupation",
"data_type": "TEXT",
"cardinality": "SINGLE"
},
{
"name": "url",
"data_type": "TEXT",
"cardinality": "SINGLE"
},
{
"name": "date",
"data_type": "TEXT",
"cardinality": "SINGLE"
}
]
}
}
Note:
The improvement of this process can be made in two iterations.
- Improving the prompts.
- Using a two step sequence (multi agent system for the complete json generation :
- First step: generate vertices.
- Second step: generate edges.
Why?:
Reduces the load on a single agent, decreasing generalization, especially while handling alarge context window.
This is all with the understanding that the schema and property keys are automatically added when the vertices and edges are correctly generated..
Are you willing to submit a PR?
- Yes I am willing to submit a PR!
Code of Conduct
- I agree to follow this project's Code of Conduct