@@ -36,7 +36,7 @@ with AutoPyTorch
3636
3737 .. code-block :: none
3838
39- <smac.runhistory.runhistory.RunHistory object at 0x7f06cabf72b0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+ <smac.runhistory.runhistory.RunHistory object at 0x7f56d6094850 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040 data_loader:batch_size, Value: 64
4141 encoder:__choice__, Value: 'OneHotEncoder'
4242 imputer:categorical_strategy, Value: 'most_frequent'
@@ -73,7 +73,7 @@ with AutoPyTorch
7373 trainer:StandardTrainer:use_snapshot_ensemble, Value: True
7474 trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
7575 trainer:__choice__, Value: 'StandardTrainer'
76- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018274784088134766 , budget=0), TrajEntry(train_perf=0.6657934001689969 , incumbent_id=1, incumbent=Configuration:
76+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0021834373474121094 , budget=0), TrajEntry(train_perf=0.407800650115584 , incumbent_id=1, incumbent=Configuration:
7777 data_loader:batch_size, Value: 64
7878 encoder:__choice__, Value: 'OneHotEncoder'
7979 imputer:categorical_strategy, Value: 'most_frequent'
@@ -110,84 +110,14 @@ with AutoPyTorch
110110 trainer:StandardTrainer:use_snapshot_ensemble, Value: True
111111 trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
112112 trainer:__choice__, Value: 'StandardTrainer'
113- , ta_runs=1, ta_time_used=4.159854412078857, wallclock_time=7.72027325630188, budget=5.555555555555555), TrajEntry(train_perf=0.40097212177595754, incumbent_id=2, incumbent=Configuration:
114- data_loader:batch_size, Value: 89
115- encoder:__choice__, Value: 'NoEncoder'
116- imputer:categorical_strategy, Value: 'most_frequent'
117- imputer:numerical_strategy, Value: 'most_frequent'
118- lr_scheduler:__choice__, Value: 'NoScheduler'
119- network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
120- network_backbone:ShapedMLPBackbone:max_units, Value: 165
121- network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'hexagon'
122- network_backbone:ShapedMLPBackbone:num_groups, Value: 5
123- network_backbone:ShapedMLPBackbone:output_dim, Value: 56
124- network_backbone:ShapedMLPBackbone:use_dropout, Value: False
125- network_backbone:__choice__, Value: 'ShapedMLPBackbone'
126- network_embedding:__choice__, Value: 'NoEmbedding'
127- network_head:__choice__, Value: 'fully_connected'
128- network_head:fully_connected:num_layers, Value: 1
129- network_init:NoInit:bias_strategy, Value: 'Zero'
130- network_init:__choice__, Value: 'NoInit'
131- optimizer:AdamOptimizer:beta1, Value: 0.8807659366281321
132- optimizer:AdamOptimizer:beta2, Value: 0.9798886944835528
133- optimizer:AdamOptimizer:lr, Value: 0.002130276824426696
134- optimizer:AdamOptimizer:use_weight_decay, Value: True
135- optimizer:AdamOptimizer:weight_decay, Value: 0.0015643941083428694
136- optimizer:__choice__, Value: 'AdamOptimizer'
137- scaler:__choice__, Value: 'StandardScaler'
138- trainer:RowCutOutTrainer:Lookahead:la_alpha, Value: 0.7581060744734438
139- trainer:RowCutOutTrainer:Lookahead:la_steps, Value: 9
140- trainer:RowCutOutTrainer:cutout_prob, Value: 0.9603666031316771
141- trainer:RowCutOutTrainer:patch_ratio, Value: 0.43329354649550056
142- trainer:RowCutOutTrainer:se_lastk, Constant: 3
143- trainer:RowCutOutTrainer:use_lookahead_optimizer, Value: True
144- trainer:RowCutOutTrainer:use_snapshot_ensemble, Value: True
145- trainer:RowCutOutTrainer:use_stochastic_weight_averaging, Value: True
146- trainer:__choice__, Value: 'RowCutOutTrainer'
147- , ta_runs=3, ta_time_used=15.746753454208374, wallclock_time=24.34652805328369, budget=5.555555555555555), TrajEntry(train_perf=0.21880654288470802, incumbent_id=3, incumbent=Configuration:
148- data_loader:batch_size, Value: 64
149- encoder:__choice__, Value: 'OneHotEncoder'
150- imputer:categorical_strategy, Value: 'most_frequent'
151- imputer:numerical_strategy, Value: 'mean'
152- lr_scheduler:ReduceLROnPlateau:factor, Value: 0.1
153- lr_scheduler:ReduceLROnPlateau:mode, Value: 'min'
154- lr_scheduler:ReduceLROnPlateau:patience, Value: 10
155- lr_scheduler:__choice__, Value: 'ReduceLROnPlateau'
156- network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
157- network_backbone:ShapedMLPBackbone:max_units, Value: 200
158- network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'funnel'
159- network_backbone:ShapedMLPBackbone:num_groups, Value: 5
160- network_backbone:ShapedMLPBackbone:output_dim, Value: 200
161- network_backbone:ShapedMLPBackbone:use_dropout, Value: False
162- network_backbone:__choice__, Value: 'ShapedMLPBackbone'
163- network_embedding:__choice__, Value: 'NoEmbedding'
164- network_head:__choice__, Value: 'fully_connected'
165- network_head:fully_connected:activation, Value: 'relu'
166- network_head:fully_connected:num_layers, Value: 2
167- network_head:fully_connected:units_layer_1, Value: 128
168- network_init:XavierInit:bias_strategy, Value: 'Normal'
169- network_init:__choice__, Value: 'XavierInit'
170- optimizer:AdamOptimizer:beta1, Value: 0.9
171- optimizer:AdamOptimizer:beta2, Value: 0.9
172- optimizer:AdamOptimizer:lr, Value: 0.01
173- optimizer:AdamOptimizer:use_weight_decay, Value: True
174- optimizer:AdamOptimizer:weight_decay, Value: 0.0001
175- optimizer:__choice__, Value: 'AdamOptimizer'
176- scaler:__choice__, Value: 'StandardScaler'
177- trainer:StandardTrainer:Lookahead:la_alpha, Value: 0.6
178- trainer:StandardTrainer:Lookahead:la_steps, Value: 6
179- trainer:StandardTrainer:se_lastk, Constant: 3
180- trainer:StandardTrainer:use_lookahead_optimizer, Value: True
181- trainer:StandardTrainer:use_snapshot_ensemble, Value: True
182- trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
183- trainer:__choice__, Value: 'StandardTrainer'
184- , ta_runs=11, ta_time_used=51.92302918434143, wallclock_time=78.90511298179626, budget=16.666666666666664)]
185- {'r2': 0.9115917714787758}
113+ , ta_runs=1, ta_time_used=4.138164281845093, wallclock_time=7.867510557174683, budget=5.555555555555555)]
114+ {'r2': 0.8990494132483559}
186115 | | Preprocessing | Estimator | Weight |
187116 |---:|:-------------------------------------------|:----------------------------------------------------------------|---------:|
188- | 0 | SimpleImputer,OneHotEncoder,StandardScaler | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.8 |
189- | 1 | SimpleImputer,NoEncoder,StandardScaler | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
190- | 2 | SimpleImputer,OneHotEncoder,NoScaler | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
117+ | 0 | SimpleImputer,OneHotEncoder,StandardScaler | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.66 |
118+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
119+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
120+ | 3 | SimpleImputer,OneHotEncoder,NoScaler | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
191121
192122
193123
@@ -279,7 +209,7 @@ with AutoPyTorch
279209
280210 .. rst-class :: sphx-glr-timing
281211
282- **Total running time of the script: ** ( 5 minutes 14.211 seconds)
212+ **Total running time of the script: ** ( 5 minutes 15.257 seconds)
283213
284214
285215.. _sphx_glr_download_basics_tabular_example_tabular_regression.py :
0 commit comments