@@ -86,7 +86,7 @@ edf %>%
8686```
8787
8888We can compute the 7 day moving average of the confirmed daily cases for each
89- geo_value by using the ` epi_slide_mean() ` function. For a more in-depth guide to
89+ ` geo_value ` by using the ` epi_slide_mean() ` function. For a more in-depth guide to
9090sliding, see ` vignette("epi_df") ` .
9191
9292``` {r}
@@ -96,15 +96,15 @@ edf %>%
9696```
9797
9898We can compute the growth rate of the confirmed cumulative cases for each
99- geo_value. For a more in-depth guide to growth rates, see ` vignette("growth_rate") ` .
99+ ` geo_value ` . For a more in-depth guide to growth rates, see ` vignette("growth_rate") ` .
100100
101101``` {r}
102102edf %>%
103103 group_by(geo_value) %>%
104104 mutate(cases_growth = growth_rate(x = time_value, y = cases_cumulative, method = "rel_change", h = 7))
105105```
106106
107- Detect outliers in daily reported cases for each geo_value. For a more in-depth
107+ Detect outliers in daily reported cases for each ` geo_value ` . For a more in-depth
108108guide to outlier detection, see ` vignette("outliers") ` .
109109
110110``` {r message=FALSE}
@@ -114,8 +114,8 @@ edf %>%
114114 ungroup()
115115```
116116
117- Add a column to the epi_df object with the daily deaths for each geo_value and
118- compute the correlations between cases and deaths for each geo_value. For a more
117+ Add a column to the epi_df object with the daily deaths for each ` geo_value ` and
118+ compute the correlations between cases and deaths for each ` geo_value ` . For a more
119119in-depth guide to correlations, see ` vignette("correlation") ` .
120120
121121``` {r}
0 commit comments