diff --git a/build.py b/build.py index c7d540b..29424bb 100644 --- a/build.py +++ b/build.py @@ -1,22 +1,40 @@ +import pandas as pd +import seaborn as sns +import matplotlib.pyplot as plt +from scipy.stats import norm + def get_categorical_variables(df): - return [] + return df[['dept','join_date','quit_date']] def get_numerical_variables(df): - return [] + return df.drop(['dept','join_date','quit_date'], axis=1) def get_numerical_variables_percentile(df): - pass + return pd.concat([df.describe(), pd.DataFrame(df.median().rename('median')).T], axis=0) def get_categorical_variables_modes(df): - pass + cat_df = get_categorical_variables(df) + return cat_df.mode() def get_missing_values_count(df): - pass + return pd.DataFrame(pd.isnull(df).sum().rename('NA_count')) def plot_histogram_with_numerical_values(df): - pass + num_df = get_numerical_variables(df) + plt.subplot(221) + plt.title(num_df.columns[0]) + sns.distplot(num_df.iloc[:,0], color='yellow', fit=norm, kde=False) + plt.subplot(222) + plt.title(num_df.columns[1]) + sns.distplot(num_df.iloc[:,1], color='yellow', fit=norm, kde=False) + plt.subplot(223) + plt.title(num_df.columns[2]) + sns.distplot(num_df.iloc[:,2], color='yellow', fit=norm, kde=False) + plt.subplot(224) + plt.title(num_df.columns[3]) + sns.distplot(num_df.iloc[:,3], color='yellow', fit=norm, kde=False) diff --git a/build.pyc b/build.pyc new file mode 100644 index 0000000..4ff9afb Binary files /dev/null and b/build.pyc differ diff --git a/tests/__init__.pyc b/tests/__init__.pyc new file mode 100644 index 0000000..836ff64 Binary files /dev/null and b/tests/__init__.pyc differ diff --git a/tests/test_get_categorical_variables.pyc b/tests/test_get_categorical_variables.pyc new file mode 100644 index 0000000..d700fe8 Binary files /dev/null and b/tests/test_get_categorical_variables.pyc differ