Skip to content

Commit 511f123

Browse files
committed
Update version to 0.15.0
1 parent ea94a5c commit 511f123

File tree

25 files changed

+73
-78
lines changed

25 files changed

+73
-78
lines changed

README.md

Lines changed: 6 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,6 @@ Cortex is an open source platform for deploying machine learning models as produ
44

55
<br>
66

7-
<!-- Delete on release branches -->
8-
<!-- CORTEX_VERSION_README_MINOR -->
9-
[install](https://cortex.dev/install)[tutorial](https://cortex.dev/iris-classifier)[docs](https://cortex.dev)[examples](https://github.com/cortexlabs/cortex/tree/0.14/examples)[we're hiring](https://angel.co/cortex-labs-inc/jobs)[email us](mailto:hello@cortex.dev)[chat with us](https://gitter.im/cortexlabs/cortex)<br><br>
10-
117
<!-- Set header Cache-Control=no-cache on the S3 object metadata (see https://help.github.com/en/articles/about-anonymized-image-urls) -->
128
![Demo](https://d1zqebknpdh033.cloudfront.net/demo/gif/v0.13_2.gif)
139

@@ -33,7 +29,7 @@ Cortex is designed to be self-hosted on any AWS account. You can spin up a clust
3329
<!-- CORTEX_VERSION_README_MINOR -->
3430
```bash
3531
# install the CLI on your machine
36-
$ bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/0.14/get-cli.sh)"
32+
$ bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/0.15/get-cli.sh)"
3733

3834
# provision infrastructure on AWS and spin up a cluster
3935
$ cortex cluster up
@@ -140,8 +136,8 @@ The CLI sends configuration and code to the cluster every time you run `cortex d
140136
## Examples of Cortex deployments
141137

142138
<!-- CORTEX_VERSION_README_MINOR x5 -->
143-
* [Sentiment analysis](https://github.com/cortexlabs/cortex/tree/0.14/examples/tensorflow/sentiment-analyzer): deploy a BERT model for sentiment analysis.
144-
* [Image classification](https://github.com/cortexlabs/cortex/tree/0.14/examples/tensorflow/image-classifier): deploy an Inception model to classify images.
145-
* [Search completion](https://github.com/cortexlabs/cortex/tree/0.14/examples/pytorch/search-completer): deploy Facebook's RoBERTa model to complete search terms.
146-
* [Text generation](https://github.com/cortexlabs/cortex/tree/0.14/examples/pytorch/text-generator): deploy Hugging Face's DistilGPT2 model to generate text.
147-
* [Iris classification](https://github.com/cortexlabs/cortex/tree/0.14/examples/sklearn/iris-classifier): deploy a scikit-learn model to classify iris flowers.
139+
* [Sentiment analysis](https://github.com/cortexlabs/cortex/tree/0.15/examples/tensorflow/sentiment-analyzer): deploy a BERT model for sentiment analysis.
140+
* [Image classification](https://github.com/cortexlabs/cortex/tree/0.15/examples/tensorflow/image-classifier): deploy an Inception model to classify images.
141+
* [Search completion](https://github.com/cortexlabs/cortex/tree/0.15/examples/pytorch/search-completer): deploy Facebook's RoBERTa model to complete search terms.
142+
* [Text generation](https://github.com/cortexlabs/cortex/tree/0.15/examples/pytorch/text-generator): deploy Hugging Face's DistilGPT2 model to generate text.
143+
* [Iris classification](https://github.com/cortexlabs/cortex/tree/0.15/examples/sklearn/iris-classifier): deploy a scikit-learn model to classify iris flowers.

build/build-image.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ set -euo pipefail
1919

2020
ROOT="$(cd "$(dirname "${BASH_SOURCE[0]}")"/.. >/dev/null && pwd)"
2121

22-
CORTEX_VERSION=master
22+
CORTEX_VERSION=0.15.0
2323

2424
dir=$1
2525
image=$2

build/cli.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ set -euo pipefail
1919

2020
ROOT="$(cd "$(dirname "${BASH_SOURCE[0]}")"/.. >/dev/null && pwd)"
2121

22-
CORTEX_VERSION=master
22+
CORTEX_VERSION=0.15.0
2323

2424
arg1=${1:-""}
2525
upload="false"

build/push-image.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
set -euo pipefail
1919

20-
CORTEX_VERSION=master
20+
CORTEX_VERSION=0.15.0
2121

2222
image=$1
2323

docs/cluster-management/config.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ instance_volume_size: 50
4242
log_group: cortex
4343

4444
# whether to use spot instances in the cluster (default: false)
45-
# see https://cortex.dev/v/master/cluster-management/spot-instances for additional details on spot configuration
45+
# see https://cortex.dev/v/0.15/cluster-management/spot-instances for additional details on spot configuration
4646
spot: false
4747
```
4848
@@ -53,24 +53,24 @@ You can follow these [instructions](../deployments/system-packages.md) to build
5353
<!-- CORTEX_VERSION_BRANCH_STABLE -->
5454
```yaml
5555
# docker image paths
56-
image_python_serve: cortexlabs/python-serve:master
57-
image_python_serve_gpu: cortexlabs/python-serve-gpu:master
58-
image_tf_serve: cortexlabs/tf-serve:master
59-
image_tf_serve_gpu: cortexlabs/tf-serve-gpu:master
60-
image_tf_api: cortexlabs/tf-api:master
61-
image_onnx_serve: cortexlabs/onnx-serve:master
62-
image_onnx_serve_gpu: cortexlabs/onnx-serve-gpu:master
63-
image_operator: cortexlabs/operator:master
64-
image_manager: cortexlabs/manager:master
65-
image_downloader: cortexlabs/downloader:master
66-
image_request_monitor: cortexlabs/request-monitor:master
67-
image_cluster_autoscaler: cortexlabs/cluster-autoscaler:master
68-
image_metrics_server: cortexlabs/metrics-server:master
69-
image_nvidia: cortexlabs/nvidia:master
70-
image_fluentd: cortexlabs/fluentd:master
71-
image_statsd: cortexlabs/statsd:master
72-
image_istio_proxy: cortexlabs/istio-proxy:master
73-
image_istio_pilot: cortexlabs/istio-pilot:master
74-
image_istio_citadel: cortexlabs/istio-citadel:master
75-
image_istio_galley: cortexlabs/istio-galley:master
56+
image_python_serve: cortexlabs/python-serve:0.15.0
57+
image_python_serve_gpu: cortexlabs/python-serve-gpu:0.15.0
58+
image_tf_serve: cortexlabs/tf-serve:0.15.0
59+
image_tf_serve_gpu: cortexlabs/tf-serve-gpu:0.15.0
60+
image_tf_api: cortexlabs/tf-api:0.15.0
61+
image_onnx_serve: cortexlabs/onnx-serve:0.15.0
62+
image_onnx_serve_gpu: cortexlabs/onnx-serve-gpu:0.15.0
63+
image_operator: cortexlabs/operator:0.15.0
64+
image_manager: cortexlabs/manager:0.15.0
65+
image_downloader: cortexlabs/downloader:0.15.0
66+
image_request_monitor: cortexlabs/request-monitor:0.15.0
67+
image_cluster_autoscaler: cortexlabs/cluster-autoscaler:0.15.0
68+
image_metrics_server: cortexlabs/metrics-server:0.15.0
69+
image_nvidia: cortexlabs/nvidia:0.15.0
70+
image_fluentd: cortexlabs/fluentd:0.15.0
71+
image_statsd: cortexlabs/statsd:0.15.0
72+
image_istio_proxy: cortexlabs/istio-proxy:0.15.0
73+
image_istio_pilot: cortexlabs/istio-pilot:0.15.0
74+
image_istio_citadel: cortexlabs/istio-citadel:0.15.0
75+
image_istio_galley: cortexlabs/istio-galley:0.15.0
7676
```

docs/cluster-management/install.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ See [cluster configuration](config.md) to learn how you can customize your clust
1212
<!-- CORTEX_VERSION_MINOR -->
1313
```bash
1414
# install the CLI on your machine
15-
$ bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/master/get-cli.sh)"
15+
$ bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/0.15/get-cli.sh)"
1616

1717
# provision infrastructure on AWS and spin up a cluster
1818
$ cortex cluster up
@@ -38,7 +38,7 @@ your cluster is ready!
3838

3939
```bash
4040
# clone the Cortex repository
41-
git clone -b master https://github.com/cortexlabs/cortex.git
41+
git clone -b 0.15 https://github.com/cortexlabs/cortex.git
4242

4343
# navigate to the TensorFlow iris classification example
4444
cd cortex/examples/tensorflow/iris-classifier

docs/cluster-management/update.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ cortex cluster update
2222
cortex cluster down
2323

2424
# update your CLI
25-
bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/master/get-cli.sh)"
25+
bash -c "$(curl -sS https://raw.githubusercontent.com/cortexlabs/cortex/0.15/get-cli.sh)"
2626

2727
# confirm version
2828
cortex version

docs/deployments/deployment.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,4 +67,4 @@ deleting my-api
6767
<!-- CORTEX_VERSION_MINOR -->
6868
* [Tutorial](../../examples/sklearn/iris-classifier/README.md) provides a step-by-step walkthough of deploying an iris classifier API
6969
* [CLI documentation](../cluster-management/cli.md) lists all CLI commands
70-
* [Examples](https://github.com/cortexlabs/cortex/tree/master/examples) demonstrate how to deploy models from common ML libraries
70+
* [Examples](https://github.com/cortexlabs/cortex/tree/0.15/examples) demonstrate how to deploy models from common ML libraries

docs/deployments/exporting.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ Here are examples for some common ML libraries:
1111
The recommended approach is export your PyTorch model with [torch.save()](https://pytorch.org/docs/stable/torch.html?highlight=save#torch.save). Here is PyTorch's documentation on [saving and loading models](https://pytorch.org/tutorials/beginner/saving_loading_models.html).
1212

1313
<!-- CORTEX_VERSION_MINOR -->
14-
[examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/blob/master/examples/pytorch/iris-classifier) exports its trained model like this:
14+
[examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/blob/0.15/examples/pytorch/iris-classifier) exports its trained model like this:
1515

1616
```python
1717
torch.save(model.state_dict(), "weights.pth")
@@ -22,7 +22,7 @@ torch.save(model.state_dict(), "weights.pth")
2222
It may also be possible to export your PyTorch model into the ONNX format using [torch.onnx.export()](https://pytorch.org/docs/stable/onnx.html#torch.onnx.export).
2323

2424
<!-- CORTEX_VERSION_MINOR -->
25-
For example, if [examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/blob/master/examples/pytorch/iris-classifier) were to export the model to ONNX, it would look like this:
25+
For example, if [examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/blob/0.15/examples/pytorch/iris-classifier) were to export the model to ONNX, it would look like this:
2626

2727
```python
2828
placeholder = torch.randn(1, 4)
@@ -50,7 +50,7 @@ A TensorFlow `SavedModel` directory should have this structure:
5050
```
5151

5252
<!-- CORTEX_VERSION_MINOR -->
53-
Most of the TensorFlow examples use this approach. Here is the relevant code from [examples/tensorflow/sentiment-analyzer](https://github.com/cortexlabs/cortex/blob/master/examples/tensorflow/sentiment-analyzer):
53+
Most of the TensorFlow examples use this approach. Here is the relevant code from [examples/tensorflow/sentiment-analyzer](https://github.com/cortexlabs/cortex/blob/0.15/examples/tensorflow/sentiment-analyzer):
5454

5555
```python
5656
import tensorflow as tf
@@ -88,14 +88,14 @@ aws s3 cp bert.zip s3://my-bucket/bert.zip
8888
```
8989

9090
<!-- CORTEX_VERSION_MINOR -->
91-
[examples/tensorflow/iris-classifier](https://github.com/cortexlabs/cortex/blob/master/examples/tensorflow/iris-classifier) also use the `SavedModel` approach, and includes a Python notebook demonstrating how it was exported.
91+
[examples/tensorflow/iris-classifier](https://github.com/cortexlabs/cortex/blob/0.15/examples/tensorflow/iris-classifier) also use the `SavedModel` approach, and includes a Python notebook demonstrating how it was exported.
9292

9393
### Other model formats
9494

9595
There are other ways to export Keras or TensorFlow models, and as long as they can be loaded and used to make predictions in Python, they will be supported by Cortex.
9696

9797
<!-- CORTEX_VERSION_MINOR -->
98-
For example, the `crnn` API in [examples/tensorflow/license-plate-reader](https://github.com/cortexlabs/cortex/blob/master/examples/tensorflow/license-plate-reader) uses this approach.
98+
For example, the `crnn` API in [examples/tensorflow/license-plate-reader](https://github.com/cortexlabs/cortex/blob/0.15/examples/tensorflow/license-plate-reader) uses this approach.
9999

100100
## Scikit-learn
101101

@@ -104,7 +104,7 @@ For example, the `crnn` API in [examples/tensorflow/license-plate-reader](https:
104104
Scikit-learn models are typically exported using `pickle`. Here is [Scikit-learn's documentation](https://scikit-learn.org/stable/modules/model_persistence.html).
105105

106106
<!-- CORTEX_VERSION_MINOR -->
107-
[examples/sklearn/iris-classifier](https://github.com/cortexlabs/cortex/blob/master/examples/sklearn/iris-classifier) uses this approach. Here is the relevant code:
107+
[examples/sklearn/iris-classifier](https://github.com/cortexlabs/cortex/blob/0.15/examples/sklearn/iris-classifier) uses this approach. Here is the relevant code:
108108

109109
```python
110110
pickle.dump(model, open("model.pkl", "wb"))
@@ -157,7 +157,7 @@ model.save_model("model.bin")
157157
It is also possible to export an XGBoost model to the ONNX format using [onnxmltools](https://github.com/onnx/onnxmltools).
158158

159159
<!-- CORTEX_VERSION_MINOR -->
160-
[examples/xgboost/iris-classifier](https://github.com/cortexlabs/cortex/blob/master/examples/xgboost/iris-classifier) uses this approach. Here is the relevant code:
160+
[examples/xgboost/iris-classifier](https://github.com/cortexlabs/cortex/blob/0.15/examples/xgboost/iris-classifier) uses this approach. Here is the relevant code:
161161

162162
```python
163163
from onnxmltools.convert import convert_xgboost

docs/deployments/predictors.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -68,10 +68,10 @@ For proper separation of concerns, it is recommended to use the constructor's `c
6868
### Examples
6969

7070
<!-- CORTEX_VERSION_MINOR -->
71-
Many of the [examples](https://github.com/cortexlabs/cortex/tree/master/examples) use the Python Predictor, including all of the PyTorch examples.
71+
Many of the [examples](https://github.com/cortexlabs/cortex/tree/0.15/examples) use the Python Predictor, including all of the PyTorch examples.
7272

7373
<!-- CORTEX_VERSION_MINOR -->
74-
Here is the Predictor for [examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/tree/master/examples/pytorch/iris-classifier):
74+
Here is the Predictor for [examples/pytorch/iris-classifier](https://github.com/cortexlabs/cortex/tree/0.15/examples/pytorch/iris-classifier):
7575

7676
```python
7777
import re
@@ -150,7 +150,7 @@ xgboost==0.90
150150
```
151151

152152
<!-- CORTEX_VERSION_MINOR x2 -->
153-
The pre-installed system packages are listed in [images/python-serve/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/python-serve/Dockerfile) (for CPU) or [images/python-serve-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/python-serve-gpu/Dockerfile) (for GPU).
153+
The pre-installed system packages are listed in [images/python-serve/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.15/images/python-serve/Dockerfile) (for CPU) or [images/python-serve-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.15/images/python-serve-gpu/Dockerfile) (for GPU).
154154

155155
If your application requires additional dependencies, you can install additional [Python packages](python-packages.md) and [system packages](system-packages.md).
156156

@@ -183,17 +183,17 @@ class TensorFlowPredictor:
183183
```
184184

185185
<!-- CORTEX_VERSION_MINOR -->
186-
Cortex provides a `tensorflow_client` to your Predictor's constructor. `tensorflow_client` is an instance of [TensorFlowClient](https://github.com/cortexlabs/cortex/tree/master/pkg/workloads/cortex/lib/client/tensorflow.py) that manages a connection to a TensorFlow Serving container to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `tensorflow_client.predict()` to make an inference with your exported TensorFlow model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
186+
Cortex provides a `tensorflow_client` to your Predictor's constructor. `tensorflow_client` is an instance of [TensorFlowClient](https://github.com/cortexlabs/cortex/tree/0.15/pkg/workloads/cortex/lib/client/tensorflow.py) that manages a connection to a TensorFlow Serving container to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `tensorflow_client.predict()` to make an inference with your exported TensorFlow model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
187187

188188
For proper separation of concerns, it is recommended to use the constructor's `config` paramater for information such as configurable model parameters or download links for initialization files. You define `config` in your [API configuration](api-configuration.md), and it is passed through to your Predictor's constructor.
189189

190190
### Examples
191191

192192
<!-- CORTEX_VERSION_MINOR -->
193-
Most of the examples in [examples/tensorflow](https://github.com/cortexlabs/cortex/tree/master/examples/tensorflow) use the TensorFlow Predictor.
193+
Most of the examples in [examples/tensorflow](https://github.com/cortexlabs/cortex/tree/0.15/examples/tensorflow) use the TensorFlow Predictor.
194194

195195
<!-- CORTEX_VERSION_MINOR -->
196-
Here is the Predictor for [examples/tensorflow/iris-classifier](https://github.com/cortexlabs/cortex/tree/master/examples/tensorflow/iris-classifier):
196+
Here is the Predictor for [examples/tensorflow/iris-classifier](https://github.com/cortexlabs/cortex/tree/0.15/examples/tensorflow/iris-classifier):
197197

198198
```python
199199
labels = ["setosa", "versicolor", "virginica"]
@@ -226,7 +226,7 @@ tensorflow==2.1.0
226226
```
227227

228228
<!-- CORTEX_VERSION_MINOR -->
229-
The pre-installed system packages are listed in [images/tf-api/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/tf-api/Dockerfile).
229+
The pre-installed system packages are listed in [images/tf-api/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.15/images/tf-api/Dockerfile).
230230

231231
If your application requires additional dependencies, you can install additional [Python packages](python-packages.md) and [system packages](system-packages.md).
232232

@@ -259,14 +259,14 @@ class ONNXPredictor:
259259
```
260260

261261
<!-- CORTEX_VERSION_MINOR -->
262-
Cortex provides an `onnx_client` to your Predictor's constructor. `onnx_client` is an instance of [ONNXClient](https://github.com/cortexlabs/cortex/tree/master/pkg/workloads/cortex/lib/client/onnx.py) that manages an ONNX Runtime session to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `onnx_client.predict()` to make an inference with your exported ONNX model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
262+
Cortex provides an `onnx_client` to your Predictor's constructor. `onnx_client` is an instance of [ONNXClient](https://github.com/cortexlabs/cortex/tree/0.15/pkg/workloads/cortex/lib/client/onnx.py) that manages an ONNX Runtime session to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `onnx_client.predict()` to make an inference with your exported ONNX model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
263263

264264
For proper separation of concerns, it is recommended to use the constructor's `config` paramater for information such as configurable model parameters or download links for initialization files. You define `config` in your [API configuration](api-configuration.md), and it is passed through to your Predictor's constructor.
265265

266266
### Examples
267267

268268
<!-- CORTEX_VERSION_MINOR -->
269-
[examples/xgboost/iris-classifier](https://github.com/cortexlabs/cortex/tree/master/examples/xgboost/iris-classifier) uses the ONNX Predictor:
269+
[examples/xgboost/iris-classifier](https://github.com/cortexlabs/cortex/tree/0.15/examples/xgboost/iris-classifier) uses the ONNX Predictor:
270270

271271
```python
272272
labels = ["setosa", "versicolor", "virginica"]
@@ -303,6 +303,6 @@ requests==2.22.0
303303
```
304304

305305
<!-- CORTEX_VERSION_MINOR x2 -->
306-
The pre-installed system packages are listed in [images/onnx-serve/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/onnx-serve/Dockerfile) (for CPU) or [images/onnx-serve-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/onnx-serve-gpu/Dockerfile) (for GPU).
306+
The pre-installed system packages are listed in [images/onnx-serve/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.15/images/onnx-serve/Dockerfile) (for CPU) or [images/onnx-serve-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.15/images/onnx-serve-gpu/Dockerfile) (for GPU).
307307

308308
If your application requires additional dependencies, you can install additional [Python packages](python-packages.md) and [system packages](system-packages.md).

0 commit comments

Comments
 (0)