@@ -21466,9 +21466,6 @@ \subsection{Subtypes}
2146621466\newcommand{\SrnRightTop}{2}
2146721467\newcommand{\SrnLeftTop}{3}
2146821468\newcommand{\SrnBottom}{4}
21469- %\newcommand{\SrnRightObjectOne}{} Redundant
21470- %\newcommand{\SrnRightObjectTwo}{} Redundant
21471- %\newcommand{\SrnRightObjectThree}{} Redundant
2147221469\newcommand{\SrnRightObjectFour}{5}
2147321470\newcommand{\SrnNullOne}{6}
2147421471\newcommand{\SrnNullTwo}{7}
@@ -22079,7 +22076,8 @@ \subsection{Type Nullability}
2207922076Nullable types are types which are
2208022077definitively known to include the null object,
2208122078regardless of the value of any type variables.
22082- This is equivalent to the syntactic criterion that $T$ is any of:
22079+ If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22080+ then this is equivalent to the syntactic criterion that $T'$ is any of:
2208322081
2208422082\begin{itemize}[itemsep=-0.5ex]
2208522083\item \VOID.
@@ -22101,7 +22099,8 @@ \subsection{Type Nullability}
2210122099Non-nullable types are types which are definitively known to
2210222100\emph{not} include the null object,
2210322101regardless of the value of any type variables.
22104- This is equivalent to the syntactic criterion that $T$ is any of:
22102+ If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22103+ then this is equivalent to the syntactic criterion that $T$ is any of:
2210522104
2210622105\begin{itemize}[itemsep=-0.5ex]
2210722106\item \code{Never}.
@@ -22468,21 +22467,23 @@ \subsection{Type Normalization}
2246822467
2246922468 \noindent
2247022469 then $T_r$ is
22471- \FunctionTypePositional{R_0 }{ }{X}{B}{s}{R }{n}{k}
22470+ \FunctionTypePositional{T'\!_0 }{ }{X}{B'\! }{s}{T'\! }{n}{k}
2247222471
2247322472 \noindent
22474- where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22473+ where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22474+ and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 1 .. s$.
2247522475\item If $T_u$ is of the form
2247622476 \FunctionTypeNamedStd{T_0}
2247722477
2247822478 \noindent
2247922479 where $r_j$ is either \REQUIRED{} or empty
2248022480 then $T_r$ is
2248122481 \noindent
22482- \FunctionTypeNamed{R_0 }{ }{X}{B}{s}{R }{n}{x}{k}{r }
22482+ \FunctionTypeNamed{T'\!_0 }{ }{X}{B'\! }{s}{T'\! }{n}{x}{k}
2248322483
2248422484 \noindent
22485- where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22485+ where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22486+ and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 0 .. s$.
2248622487\end{itemize}
2248722488
2248822489\commentary{%
@@ -22820,8 +22821,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2282022821which is defined as follows.
2282122822Assume that $P_1$ and $P_2$ are two formal parameter type declarations
2282222823with declared type $T_1$ respectively $T_2$,
22823- such that both are positional or both are named ,
22824- with the same name \DefineSymbol{n}.
22824+ such that both are positional,
22825+ or both are named and have the same name \DefineSymbol{n}.
2282522826Then \UpperBoundType{$P_1$}{$P_2$} (respectively \LowerBoundType{$P_1$}{$P_2$})
2282622827is the formal parameter declaration $P$,
2282722828with the following proporties:
@@ -22840,7 +22841,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2284022841 }
2284122842\item
2284222843 $P$ is named if $P_1$ and $P_2$ are named.
22843- In this case, the name of $P$ is $n$.
22844+ In this case, the name of $P$ is $n$
22845+ (\commentary{which is also the name of $P_1$ and $P_2$}).
2284422846 $P$ is marked with the modifier \REQUIRED{}
2284522847 if both $P_1$ and $P_2$ have this modifier
2284622848 (respectively, if either $P_1$ or $P_2$ has this modifier).
@@ -23019,22 +23021,25 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2301923021
2302023022 \noindent
2302123023 \code{$T_1$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{11}$,\,\ldots,\,$X_m$\,%
23022- \EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots,\ ,$P_{1k}$)}
23024+ \EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots[\ldots\ ,$P_{1k}$] )}
2302323025
2302423026 \noindent
2302523027 \code{$T_2$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{21}$,\,\ldots,\,$X_m$\,%
23026- \EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\ ,$P_{2l}$)}
23028+ \EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots[\ldots\ ,$P_{2l}$] )}
2302723029
2302823030 \noindent
2302923031 such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
23030- and both have the same number of required positional parameters.
23032+ and both $U_1$ or $U_2$ have
23033+ the same number of required positional parameters.
23034+ In the case where $U_1$ or $U_2$ has no optional positional parameters,
23035+ the brackets are omitted.
2303123036 Let $q$ be $\metavar{min}(k, l)$,
2303223037 let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
23033- let $B_{3i}$ be $B_{1i}$, and
23038+ let $B_{3i}$ be $B_{1i}$, and finally
2303423039 let $P_{3i}$ be \LowerBoundType{$P_{1i}$}{$P_{2i}$}.
23035- Then \DefEquals {\UpperBoundType{$U_1$}{$U_2$}}{%
23040+ Then \DefEqualsNewline {\UpperBoundType{$U_1$}{$U_2$}}{%
2303623041 \code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
23037- \EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\ ,$P_{3q}$)}}.
23042+ \EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots[\ldots\ ,$P_{3q}$] )}}.
2303823043
2303923044 \commentary{%
2304023045 This case includes non-generic function types by allowing $m$ to be zero.%
@@ -23092,8 +23097,11 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2309223097%%
2309323098%% TODO(eernst), for review: Why do we not have a rule for
2309423099%% \UpperBoundType{T1 Function(P1..Pm, [...])}{T2 Function(P1..Pk, {...}}}
23095- %% = T3 Function(R1..Rk), where the left operand has at least k parameters,
23096- %% plus the converse?
23100+ %% = T3 Function(R1..Rk), where the left operand has at least k parameters
23101+ %% and every named parameter of the right operand is optional (plus the
23102+ %% same rule with operands swapped)?
23103+ %% Motivation: Some expressions of type `Function` would then have a more
23104+ %% precise type, and programs would be safer (a tiny bit, at least).
2309723105%%
2309823106\item
2309923107 \DefEquals{\UpperBoundType{$S_1$ \FUNCTION<\ldots>(\ldots)}{%
@@ -23456,7 +23464,7 @@ \subsubsection{The Standard Upper Bound of Distinct Interface Types}
2345623464$\{\;T\;|\;T\,\in\,M\;\wedge\;\NominalTypeDepth{$T$}\,=\,n\,\}$
2345723465for any natural number $n$.
2345823466Let $q$ be the largest number such that $M_q$ has cardinality one.
23459- Such a number must exist because $M_0$ is $\{\code{Object? }\}$.
23467+ Such a number must exist because $M_0$ is $\{\code{Object}\}$.
2346023468The least upper bound of $I$ and $J$ is then the sole element of $M_q$.
2346123469
2346223470
@@ -23689,7 +23697,7 @@ \subsection{Least and Greatest Closure of Types}
2368923697 the least closure of $S$ with respect to $L$ is
2369023698
2369123699 \noindent
23692- \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23700+ \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2369323701
2369423702 \noindent
2369523703 where
@@ -23704,7 +23712,7 @@ \subsection{Least and Greatest Closure of Types}
2370423712 the greatest closure of $S$ with respect to $L$ is
2370523713
2370623714 \noindent
23707- \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23715+ \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2370823716
2370923717 \noindent
2371023718 where $U_0$ is the greatest closure of $T_0$ with respect to $L$,
@@ -23760,15 +23768,17 @@ \subsection{Types Bounded by Types}
2376023768\LMLabel{typesBoundedByTypes}
2376123769
2376223770\LMHash{}%
23763- For a given type $T_0$, we introduce the notion of a
23764- \IndexCustom{$T_0$ bounded type}{type!T0 bounded}:
23765- $T_0$ itself is $T_0$ bounded;
23766- if $B$ is $T_0$ bounded and
23771+ For a given type $T$, we introduce the notion of a
23772+ % `T bounded` at the end should have been `$T$ bounded`, but makeindex
23773+ % seems to be unable to allow math mode in that position.
23774+ \IndexCustom{$T$ bounded type}{type!T bounded}:
23775+ $T$ itself is $T$ bounded;
23776+ if $B$ is $T$ bounded and
2376723777$X$ is a type variable with bound $B$
23768- then $X$ is $T_0 $ bounded;
23769- finally, if $B$ is $T_0 $ bounded and
23778+ then $X$ is $T $ bounded;
23779+ finally, if $B$ is $T $ bounded and
2377023780$X$ is a type variable
23771- then $X \& B$ is $T_0 $ bounded.
23781+ then $X \& B$ is $T $ bounded.
2377223782
2377323783\LMHash{}%
2377423784In particular, a
@@ -23782,11 +23792,11 @@ \subsection{Types Bounded by Types}
2378223792\LMHash{}%
2378323793A
2378423794\IndexCustom{function-type bounded type}{type!function-type bounded}
23785- is a type $T $ which is $T_0 $ bounded where $T_0 $ is a function type
23795+ is a type $S $ which is $T $ bounded where $T $ is a function type
2378623796(\ref{functionTypes}).
23787- A function-type bounded type $T $ has an
23797+ A function-type bounded type $S $ has an
2378823798\Index{associated function type}
23789- which is the unique function type $T_0 $ such that $T $ is $T_0 $ bounded.
23799+ which is the unique function type $T $ such that $S $ is $T $ bounded.
2379023800
2379123801
2379223802\subsection{Class Building Types}
@@ -23847,7 +23857,7 @@ \subsection{Interface Types}
2384723857are interface types,
2384823858and so are
2384923859\code{Future<$T$>}, \code{Stream<$T$>}, \code{Iterable<$T$>},
23850- \code{List<$T$>}, \code{Map<$S$,\,\,$T$}, and \code{Set<$T$>},
23860+ \code{List<$T$>}, \code{Map<$S$,\,\,$T$> }, and \code{Set<$T$>},
2385123861for any $S$ and $T$.%
2385223862}
2385323863
@@ -23973,8 +23983,13 @@ \subsection{Type Null}
2397323983\code{Null} is a subtype of all types of the form \code{$T$?},
2397423984and of all types $S$ such that \futureOrBase{S} is
2397523985a top type or a type of the form \code{$T$?}.
23976- The only non-trivial subtypes of \code{Null} are
23977- \code{Never} and subtypes of \code{Never}
23986+ The only subtypes of \code{Null} are
23987+ other types that contain the null object and no other objects,
23988+ e.g., \code{Null?},
23989+ the empty type,
23990+ i.e., \code{Never} and subtypes of \code{Never},
23991+ and types that could be either,
23992+ e.g., a type variable with bound \code{Null}
2397823993(\ref{subtypeRules}).%
2397923994}
2398023995
@@ -24500,22 +24515,10 @@ \subsection{Type Void}
2450024515\commentary{%
2450124516The type \VOID{} is a top type
2450224517(\ref{superBoundedTypes}),
24503- so \VOID{} and \code{Object} are subtypes of each other
24518+ so \VOID{} and \code{Object? } are subtypes of each other
2450424519(\ref{subtypes}),
2450524520which also implies that any object can be
24506- the value of an expression of type \VOID.
24507- %
24508- Consequently, any instance of type \code{Type} which reifies the type \VOID{}
24509- must compare equal (according to the \lit{==} operator \ref{equality})
24510- to any instance of \code{Type} which reifies the type \code{Object}
24511- (\ref{dynamicTypeSystem}).
24512- It is not guaranteed that \code{identical(\VOID, Object)} evaluates to
24513- the \TRUE{} object.
24514- In fact, it is not recommended that implementations strive to achieve this,
24515- because it may be more important to ensure that diagnostic messages
24516- (including stack traces and dynamic error messages)
24517- preserve enough information to use the word `void' when referring to types
24518- which are specified as such in source code.%
24521+ the value of an expression of type \VOID.%
2451924522}
2452024523
2452124524\LMHash{}%
@@ -24653,7 +24656,7 @@ \subsection{Type Void}
2465324656}
2465424657
2465524658\begin{dartCode}
24656- \FOR{} (Object x in <\VOID>[]) \{\} // \comment{Error.}
24659+ \FOR{} (Object? x in <\VOID>[]) \{\} // \comment{Error.}
2465724660\AWAIT{} \FOR{} (int x \IN{} new Stream<\VOID{}>.empty()) \{\} // \comment{Error.}
2465824661\FOR{} (\VOID{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK.}
2465924662\FOR (\VAR{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK, type of x inferred.}
@@ -24962,9 +24965,11 @@ \subsection{Definite Assignment}
2496224965(\commentary{%
2496324966e.g., as an expression, or as the left hand side of an assignment%
2496424967}),
24965- the variable has a status as being
24966- \IndexCustom{definitely assigned}{local variable!definitely assigned} or
24967- \IndexCustom{definitely unassigned}{local variable!definitely unassigned}.
24968+ the variable can be
24969+ \IndexCustom{definitely assigned}{local variable!definitely assigned},
24970+ and it can be
24971+ \IndexCustom{definitely unassigned}{local variable!definitely unassigned},
24972+ and it can be neither.
2496824973
2496924974\commentary{%
2497024975The precise flow analysis which determines this status at each location
@@ -25217,15 +25222,16 @@ \subsection{Type Promotion}
2521725222
2521825223%% TODO(eernst), for review: The null safety spec says that `T?` is
2521925224%% promoted to `T`, but implementations _do_ promote `X extends int?` to
25220- %% `X & int`. So I've specified the latter. This is also more consistent
25221- %% with the approach used with `==`.
25225+ %% `X & int`. So we may be able to specify something which will yield
25226+ %% slightly more precise types, and which is more precisely the implemented
25227+ %% behavior.
2522225228\LMHash{}%
2522325229A check of the form \code{$v$\,\,!=\,\,\NULL},
2522425230\code{\NULL\,\,!=\,\,$v$},
2522525231or \code{$v$\,\,\IS\,\,$T$}
25226- where $v$ has type $T$ at $\ell$
25232+ where $v$ has static type $T? $ at $\ell$
2522725233promotes the type of $v$
25228- to \NonNullType{ $T$} in the \TRUE{} continuation,
25234+ to $T$ in the \TRUE{} continuation,
2522925235and to \code{Null} in the \FALSE{} continuation.
2523025236
2523125237\commentary{%
0 commit comments