|
| 1 | +/* |
| 2 | + * Copyright Qdrant |
| 3 | + * Copyright 2021 Datafuse Labs |
| 4 | + * |
| 5 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | + * you may not use this file except in compliance with the License. |
| 7 | + * You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +#include <stdlib.h> |
| 19 | +#include <stdint.h> |
| 20 | +#include <immintrin.h> |
| 21 | + |
| 22 | +#include "export_macro.h" |
| 23 | + |
| 24 | +#define HSUM256_PS(X, R) \ |
| 25 | + float R = 0.0f; \ |
| 26 | + { \ |
| 27 | + __m128 x128 = _mm_add_ps(_mm256_extractf128_ps(X, 1), _mm256_castps256_ps128(X)); \ |
| 28 | + __m128 x64 = _mm_add_ps(x128, _mm_movehl_ps(x128, x128)); \ |
| 29 | + __m128 x32 = _mm_add_ss(x64, _mm_shuffle_ps(x64, x64, 0x55)); \ |
| 30 | + R = _mm_cvtss_f32(x32); \ |
| 31 | + } |
| 32 | + |
| 33 | +#define HSUM256_EPI32(X, R) \ |
| 34 | + int R = 0; \ |
| 35 | + { \ |
| 36 | + __m128i x128 = _mm_add_epi32(_mm256_extractf128_si256(X, 1), _mm256_castsi256_si128(X)); \ |
| 37 | + __m128i x64 = _mm_add_epi32(x128, _mm_srli_si128(x128, 8)); \ |
| 38 | + __m128i x32 = _mm_add_epi32(x64, _mm_srli_si128(x64, 4)); \ |
| 39 | + R = _mm_cvtsi128_si32(x32); \ |
| 40 | + } |
| 41 | + |
| 42 | +EXPORT float impl_score_dot_avx( |
| 43 | + const uint8_t* query_ptr, |
| 44 | + const uint8_t* vector_ptr, |
| 45 | + uint32_t dim |
| 46 | +) { |
| 47 | + const __m256i* v_ptr = (const __m256i*)vector_ptr; |
| 48 | + const __m256i* q_ptr = (const __m256i*)query_ptr; |
| 49 | + |
| 50 | + __m256i mul1 = _mm256_setzero_si256(); |
| 51 | + __m256i mask_epu32 = _mm256_set1_epi32(0xFFFF); |
| 52 | + for (uint32_t _i = 0; _i < dim / 32; _i++) { |
| 53 | + __m256i v = _mm256_loadu_si256(v_ptr); |
| 54 | + __m256i q = _mm256_loadu_si256(q_ptr); |
| 55 | + v_ptr++; |
| 56 | + q_ptr++; |
| 57 | + |
| 58 | + __m256i s = _mm256_maddubs_epi16(v, q); |
| 59 | + __m256i s_low = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(s)); |
| 60 | + __m256i s_high = _mm256_cvtepi16_epi32(_mm256_extractf128_si256(s, 1)); |
| 61 | + mul1 = _mm256_add_epi32(mul1, s_low); |
| 62 | + mul1 = _mm256_add_epi32(mul1, s_high); |
| 63 | + } |
| 64 | + |
| 65 | + // the vector sizes are assumed to be multiples of 16, check if one last 16-element part remaining |
| 66 | + if (dim % 32 != 0) { |
| 67 | + __m128i v_short = _mm_loadu_si128((const __m128i*)v_ptr); |
| 68 | + __m128i q_short = _mm_loadu_si128((const __m128i*)q_ptr); |
| 69 | + |
| 70 | + __m256i v1 = _mm256_cvtepu8_epi16(v_short); |
| 71 | + __m256i q1 = _mm256_cvtepu8_epi16(q_short); |
| 72 | + |
| 73 | + __m256i s = _mm256_mullo_epi16(v1, q1); |
| 74 | + mul1 = _mm256_add_epi32(mul1, _mm256_and_si256(s, mask_epu32)); |
| 75 | + mul1 = _mm256_add_epi32(mul1, _mm256_srli_epi32(s, 16)); |
| 76 | + } |
| 77 | + __m256 mul_ps = _mm256_cvtepi32_ps(mul1); |
| 78 | + HSUM256_PS(mul_ps, mul_scalar); |
| 79 | + return mul_scalar; |
| 80 | +} |
| 81 | + |
| 82 | +EXPORT float impl_score_l1_avx( |
| 83 | + const uint8_t* query_ptr, |
| 84 | + const uint8_t* vector_ptr, |
| 85 | + uint32_t dim |
| 86 | +) { |
| 87 | + const __m256i* v_ptr = (const __m256i*)vector_ptr; |
| 88 | + const __m256i* q_ptr = (const __m256i*)query_ptr; |
| 89 | + |
| 90 | + uint32_t m = dim - (dim % 32); |
| 91 | + __m256i sum256 = _mm256_setzero_si256(); |
| 92 | + |
| 93 | + for (uint32_t i = 0; i < m; i += 32) { |
| 94 | + __m256i v = _mm256_loadu_si256(v_ptr); |
| 95 | + __m256i q = _mm256_loadu_si256(q_ptr); |
| 96 | + v_ptr++; |
| 97 | + q_ptr++; |
| 98 | + |
| 99 | + // Compute the difference in both directions and take the maximum for abs |
| 100 | + __m256i diff1 = _mm256_subs_epu8(v, q); |
| 101 | + __m256i diff2 = _mm256_subs_epu8(q, v); |
| 102 | + |
| 103 | + __m256i abs_diff = _mm256_max_epu8(diff1, diff2); |
| 104 | + |
| 105 | + __m256i abs_diff16_lo = _mm256_unpacklo_epi8(abs_diff, _mm256_setzero_si256()); |
| 106 | + __m256i abs_diff16_hi = _mm256_unpackhi_epi8(abs_diff, _mm256_setzero_si256()); |
| 107 | + |
| 108 | + sum256 = _mm256_add_epi16(sum256, abs_diff16_lo); |
| 109 | + sum256 = _mm256_add_epi16(sum256, abs_diff16_hi); |
| 110 | + } |
| 111 | + |
| 112 | + // the vector sizes are assumed to be multiples of 16, check if one last 16-element part remaining |
| 113 | + if (m < dim) { |
| 114 | + __m128i v_short = _mm_loadu_si128((const __m128i * ) v_ptr); |
| 115 | + __m128i q_short = _mm_loadu_si128((const __m128i * ) q_ptr); |
| 116 | + |
| 117 | + __m128i diff1 = _mm_subs_epu8(v_short, q_short); |
| 118 | + __m128i diff2 = _mm_subs_epu8(q_short, v_short); |
| 119 | + |
| 120 | + __m128i abs_diff = _mm_max_epu8(diff1, diff2); |
| 121 | + |
| 122 | + __m128i abs_diff16_lo_128 = _mm_unpacklo_epi8(abs_diff, _mm_setzero_si128()); |
| 123 | + __m128i abs_diff16_hi_128 = _mm_unpackhi_epi8(abs_diff, _mm_setzero_si128()); |
| 124 | + |
| 125 | + __m256i abs_diff16_lo = _mm256_cvtepu16_epi32(abs_diff16_lo_128); |
| 126 | + __m256i abs_diff16_hi = _mm256_cvtepu16_epi32(abs_diff16_hi_128); |
| 127 | + |
| 128 | + sum256 = _mm256_add_epi16(sum256, abs_diff16_lo); |
| 129 | + sum256 = _mm256_add_epi16(sum256, abs_diff16_hi); |
| 130 | + } |
| 131 | + |
| 132 | + __m256i sum_epi32 = _mm256_add_epi32( |
| 133 | + _mm256_unpacklo_epi16(sum256, _mm256_setzero_si256()), |
| 134 | + _mm256_unpackhi_epi16(sum256, _mm256_setzero_si256())); |
| 135 | + |
| 136 | + HSUM256_EPI32(sum_epi32, sum); |
| 137 | + |
| 138 | + return (float) sum; |
| 139 | +} |
| 140 | + |
| 141 | +EXPORT uint32_t impl_xor_popcnt_scalar8_avx_uint128( |
| 142 | + const uint8_t* query_ptr, |
| 143 | + const uint8_t* vector_ptr, |
| 144 | + uint32_t count |
| 145 | +) { |
| 146 | + const uint64_t* v_ptr = (const uint64_t*)vector_ptr; |
| 147 | + const uint64_t* q_ptr = (const uint64_t*)query_ptr; |
| 148 | + |
| 149 | + __m256i sum1 = _mm256_set1_epi32(0); |
| 150 | + __m256i sum2 = _mm256_set1_epi32(0); |
| 151 | + for (uint32_t _i = 0; _i < count; _i++) { |
| 152 | + uint64_t v_1 = *v_ptr; |
| 153 | + uint64_t v_2 = *(v_ptr + 1); |
| 154 | + |
| 155 | + __m256i popcnt1 = _mm256_set_epi32( |
| 156 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 0)), |
| 157 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 2)), |
| 158 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 4)), |
| 159 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 6)), |
| 160 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 1)), |
| 161 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 3)), |
| 162 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 5)), |
| 163 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 7)) |
| 164 | + ); |
| 165 | + sum1 = _mm256_add_epi32(sum1, popcnt1); |
| 166 | + |
| 167 | + __m256i popcnt2 = _mm256_set_epi32( |
| 168 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 8)), |
| 169 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 10)), |
| 170 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 12)), |
| 171 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 14)), |
| 172 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 9)), |
| 173 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 11)), |
| 174 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 13)), |
| 175 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 15)) |
| 176 | + ); |
| 177 | + sum2 = _mm256_add_epi32(sum2, popcnt2); |
| 178 | + |
| 179 | + v_ptr += 2; |
| 180 | + q_ptr += 16; |
| 181 | + } |
| 182 | + __m256i factor1 = _mm256_set_epi32(1, 2, 4, 8, 1, 2, 4, 8); |
| 183 | + __m256i factor2 = _mm256_set_epi32(16, 32, 64, 128, 16, 32, 64, 128); |
| 184 | + __m256 result1_mm256 = _mm256_cvtepi32_ps(_mm256_mullo_epi32(sum1, factor1)); |
| 185 | + __m256 result2_mm256 = _mm256_cvtepi32_ps(_mm256_mullo_epi32(sum2, factor2)); |
| 186 | + HSUM256_PS(_mm256_add_ps(result1_mm256, result2_mm256), mul_scalar); |
| 187 | + return (uint32_t)mul_scalar; |
| 188 | +} |
| 189 | + |
| 190 | +EXPORT uint32_t impl_xor_popcnt_scalar4_avx_uint128( |
| 191 | + const uint8_t* query_ptr, |
| 192 | + const uint8_t* vector_ptr, |
| 193 | + uint32_t count |
| 194 | +) { |
| 195 | + const uint64_t* v_ptr = (const uint64_t*)vector_ptr; |
| 196 | + const uint64_t* q_ptr = (const uint64_t*)query_ptr; |
| 197 | + |
| 198 | + __m256i sum = _mm256_set1_epi32(0); |
| 199 | + for (uint32_t _i = 0; _i < count; _i++) { |
| 200 | + uint64_t v_1 = *v_ptr; |
| 201 | + uint64_t v_2 = *(v_ptr + 1); |
| 202 | + |
| 203 | + __m256i popcnt = _mm256_set_epi32( |
| 204 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 0)), |
| 205 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 2)), |
| 206 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 4)), |
| 207 | + _mm_popcnt_u64(v_1 ^ *(q_ptr + 6)), |
| 208 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 1)), |
| 209 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 3)), |
| 210 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 5)), |
| 211 | + _mm_popcnt_u64(v_2 ^ *(q_ptr + 7)) |
| 212 | + ); |
| 213 | + sum = _mm256_add_epi32(sum, popcnt); |
| 214 | + |
| 215 | + v_ptr += 2; |
| 216 | + q_ptr += 8; |
| 217 | + } |
| 218 | + __m256i factor = _mm256_set_epi32(1, 2, 4, 8, 1, 2, 4, 8); |
| 219 | + __m256 result_mm256 = _mm256_cvtepi32_ps(_mm256_mullo_epi32(sum, factor)); |
| 220 | + HSUM256_PS(result_mm256, mul_scalar); |
| 221 | + return (uint32_t)mul_scalar; |
| 222 | +} |
| 223 | + |
0 commit comments