Skip to content

self.hd_alpha_downsamples = nn.Parameter(torch.zeros(1)) #65

@MicroPhion

Description

@MicroPhion
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x = self.patch_embed(x) # [2, 3, 1024, 1024] -> [2, 64, 64, 768]
    if self.pos_embed is not None:
        x = x + self.pos_embed

    global_features = []
    for i, blk in enumerate(self.blocks):
        x = blk(x) # [2, 64, 64, 768] -> [2, 64, 64, 768]
        if self.sam_hd and blk.window_size == 0: # "global_attn_indexes": [2, 5, 8, 11]
            global_features.append(x)

    x = self.neck(x.permute(0, 3, 1, 2)) # [2, 64, 64, 768]->[2, 256, 64, 64]
    x_dtype = x.dtype
    x = F.interpolate(
        x.float(), size=(96, 96), mode="bilinear", align_corners=False
    ).to(x_dtype) # [2, 64, 64, 768]->[2, 256, 96, 96]
    x = self.downsamples(x) # [2, 256, 96, 96]->[2, 1024, 24, 24]

    if self.sam_hd:
        first_global_feature = self.neck_hd(global_features[0].permute(0, 3, 1, 2)) # [2, 64, 64, 768]->[2, 256, 64, 64]
        x_dtype = first_global_feature.dtype
        first_global_feature = F.interpolate(
            first_global_feature.float(),
            size=(96, 96),
            mode="bilinear",
            align_corners=False,
        ) # [2, 256, 64, 64] -> [2, 256, 96, 96]
        first_global_feature = self.downsamples(first_global_feature.to(x_dtype)) # [2, 256, 96, 96] -> [2, 1024, 24, 24]
        x = x + first_global_feature * self.hd_alpha_downsamples #这里self.hd_alpha_downsamples = 0,也就是first_global_feature的计算没有意义

上面的代码是sam.py文件中的一段,看上面的代码,这里设置self.hd_alpha_downsamples一直为0,计算first_global_feature的作用是什么,这里其实不是一直都是0,在外部会对这个变量进行修改。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions