Skip to content

Commit ea5052f

Browse files
committed
🐛 doc fix: use 0.12.11 for colors and syntax error in conv code
1 parent f946e60 commit ea5052f

File tree

6 files changed

+20
-327
lines changed

6 files changed

+20
-327
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ MakieExt = ["Makie"]
4242
[compat]
4343
AutoHashEquals = "2.2.0"
4444
CairoMakie = "0.10.12"
45-
Colors = "0.13.0"
45+
Colors = "0.12.11"
4646
Combinatorics = "1.0.2"
4747
DataStructures = "0.18.20"
4848
DocStringExtensions = "0.9.3"

src/Convolutional/convolutional_code.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -211,7 +211,7 @@ function is_minimal(C::AbstractConvolutionalCode)
211211
G_h = zeros(UInt8, C.k, C.n)
212212
for r = 1:C.k
213213
for c in C.n
214-
degree(C.G[r, c]) == C.vi[r] && G_h[r, c] == 1
214+
degree(C.G[r, c]) == C.vi[r] && (G_h[r, c] = 1)
215215
end
216216
end
217217
return k == rank(G_h)

src/LDPC/simulations.jl

Lines changed: 2 additions & 256 deletions
Original file line numberDiff line numberDiff line change
@@ -1295,262 +1295,8 @@ function single_decoder_test(H::CTMatrixTypes)
12951295
# @inbounds for j in 1:n
12961296
# rand(dist) ≤ p ? (err[j] = 1; chn_inits[j] = init_1;) : (err[j] = 0; chn_inits[j] = init_0;)
12971297
# end
1298-
err = [
1299-
0,
1300-
0,
1301-
0,
1302-
0,
1303-
0,
1304-
0,
1305-
0,
1306-
0,
1307-
0,
1308-
0,
1309-
0,
1310-
0,
1311-
0,
1312-
0,
1313-
0,
1314-
0,
1315-
0,
1316-
0,
1317-
0,
1318-
0,
1319-
0,
1320-
0,
1321-
0,
1322-
0,
1323-
0,
1324-
0,
1325-
0,
1326-
0,
1327-
0,
1328-
0,
1329-
0,
1330-
0,
1331-
0,
1332-
0,
1333-
0,
1334-
0,
1335-
0,
1336-
0,
1337-
0,
1338-
0,
1339-
0,
1340-
0,
1341-
0,
1342-
0,
1343-
0,
1344-
0,
1345-
0,
1346-
0,
1347-
0,
1348-
0,
1349-
0,
1350-
0,
1351-
0,
1352-
0,
1353-
0,
1354-
0,
1355-
0,
1356-
0,
1357-
0,
1358-
0,
1359-
0,
1360-
0,
1361-
0,
1362-
0,
1363-
0,
1364-
0,
1365-
0,
1366-
0,
1367-
0,
1368-
0,
1369-
0,
1370-
0,
1371-
0,
1372-
0,
1373-
0,
1374-
0,
1375-
0,
1376-
0,
1377-
0,
1378-
0,
1379-
1,
1380-
0,
1381-
0,
1382-
0,
1383-
0,
1384-
0,
1385-
0,
1386-
0,
1387-
0,
1388-
0,
1389-
0,
1390-
0,
1391-
0,
1392-
0,
1393-
0,
1394-
0,
1395-
0,
1396-
0,
1397-
0,
1398-
0,
1399-
0,
1400-
0,
1401-
0,
1402-
0,
1403-
0,
1404-
0,
1405-
0,
1406-
0,
1407-
0,
1408-
0,
1409-
0,
1410-
0,
1411-
0,
1412-
0,
1413-
0,
1414-
0,
1415-
0,
1416-
0,
1417-
0,
1418-
0,
1419-
0,
1420-
0,
1421-
0,
1422-
0,
1423-
0,
1424-
0,
1425-
0,
1426-
0,
1427-
0,
1428-
0,
1429-
0,
1430-
0,
1431-
0,
1432-
0,
1433-
0,
1434-
0,
1435-
0,
1436-
0,
1437-
0,
1438-
0,
1439-
0,
1440-
0,
1441-
0,
1442-
0,
1443-
0,
1444-
0,
1445-
0,
1446-
0,
1447-
0,
1448-
0,
1449-
0,
1450-
0,
1451-
0,
1452-
0,
1453-
0,
1454-
0,
1455-
0,
1456-
0,
1457-
0,
1458-
0,
1459-
0,
1460-
0,
1461-
0,
1462-
0,
1463-
0,
1464-
0,
1465-
0,
1466-
0,
1467-
0,
1468-
0,
1469-
0,
1470-
0,
1471-
0,
1472-
0,
1473-
0,
1474-
0,
1475-
0,
1476-
0,
1477-
0,
1478-
0,
1479-
0,
1480-
0,
1481-
0,
1482-
0,
1483-
0,
1484-
0,
1485-
0,
1486-
0,
1487-
0,
1488-
0,
1489-
0,
1490-
0,
1491-
0,
1492-
0,
1493-
0,
1494-
0,
1495-
0,
1496-
0,
1497-
0,
1498-
0,
1499-
0,
1500-
0,
1501-
0,
1502-
0,
1503-
0,
1504-
0,
1505-
0,
1506-
0,
1507-
0,
1508-
0,
1509-
0,
1510-
0,
1511-
0,
1512-
0,
1513-
0,
1514-
0,
1515-
0,
1516-
0,
1517-
0,
1518-
0,
1519-
0,
1520-
0,
1521-
0,
1522-
0,
1523-
0,
1524-
0,
1525-
0,
1526-
0,
1527-
0,
1528-
0,
1529-
0,
1530-
0,
1531-
0,
1532-
0,
1533-
0,
1534-
0,
1535-
0,
1536-
0,
1537-
0,
1538-
0,
1539-
0,
1540-
0,
1541-
0,
1542-
0,
1543-
0,
1544-
0,
1545-
0,
1546-
0,
1547-
0,
1548-
0,
1549-
0,
1550-
0,
1551-
0,
1552-
0,
1553-
]
1298+
err = zeros(Int, 254)
1299+
err[81] = 1
15541300
chn_inits = [init_0 for _ = 1:n]
15551301
chn_inits[81] = init_1
15561302

test/Classical/quasi-cyclic_code_test.jl

Lines changed: 3 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -29,21 +29,9 @@
2929
3,
3030
5,
3131
[
32-
x,
33-
x^2,
34-
x^4,
35-
x^8,
36-
x^16,
37-
x^5,
38-
x^10,
39-
x^20,
40-
x^9,
41-
x^18,
42-
x^25,
43-
x^19,
44-
x^7,
45-
x^14,
46-
x^28,
32+
x x^2 x^4 x^8 x^16;
33+
x^5 x^10 x^20 x^9 x^18;
34+
x^25 x^19 x^7 x^14 x^28
4735
],
4836
)
4937
# A = matrix(R, 3, 5,

test/testcases.jl

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -123,3 +123,10 @@ C ∩ B == C
123123
B = BCHCode(q, n, δ - 1, b + 4)
124124
D = C B # check later that this is == repetition code
125125
C + B
126+
127+
# Remove?
128+
# We will only be concerned with cyclic Reed-Solomon codes, but the more general, and original, definition of Reed-Solomon codes will lead us into the final family of codes we will use in this work. Let $\mathcal{P}_k(x)$ denote the set of polynomials of degree less than $k$ in $\mathbb{F}_{p^m}[x]$. The Reed-Solomon code of length $n \leq p^m$ and dimension $k < n$ is given by
129+
#
130+
# $$\mathrm{RS}_{p^m}(n, k) = \{ (f(\alpha_1), \dots, f(\alpha_n)) \mid f(x) \in \mathcal{P}_k(x)\},$$
131+
#
132+
# where $\alpha_i \in \mathbb{F}_{p^m}$. The most common case $n = p^m$ is the extended code of the cyclic definition, but only the case $n = p^m -1$ is, in general, cyclic. The proof of this is direct application of the Chinese Remainder Theorem.

test/utils_test.jl

Lines changed: 6 additions & 54 deletions
Original file line numberDiff line numberDiff line change
@@ -278,60 +278,12 @@
278278
6,
279279
9,
280280
[
281-
1,
282-
0,
283-
0,
284-
0,
285-
0,
286-
0,
287-
1,
288-
1,
289-
0,
290-
0,
291-
1,
292-
0,
293-
0,
294-
0,
295-
0,
296-
0,
297-
1,
298-
1,
299-
0,
300-
0,
301-
1,
302-
0,
303-
0,
304-
0,
305-
1,
306-
0,
307-
1,
308-
1,
309-
0,
310-
1,
311-
1,
312-
1,
313-
1,
314-
0,
315-
1,
316-
0,
317-
1,
318-
1,
319-
0,
320-
1,
321-
1,
322-
1,
323-
0,
324-
0,
325-
1,
326-
0,
327-
1,
328-
1,
329-
1,
330-
1,
331-
1,
332-
1,
333-
0,
334-
0,
281+
1 0 0 0 0 0 1 1 0;
282+
0 1 0 0 0 0 0 1 1;
283+
0 0 1 0 0 0 1 0 1;
284+
1 0 1 1 1 1 0 1 0;
285+
1 1 0 1 1 1 0 0 1;
286+
0 1 1 1 1 1 1 0 0
335287
],
336288
)
337289
@test weight_matrix(A) == [1 0 2; 2 3 1]

0 commit comments

Comments
 (0)