|
| 1 | +from pathlib import Path |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import torch.nn as nn |
| 5 | +from onnx import TensorProto, helper |
| 6 | + |
| 7 | +from hls4ml.converters import convert_from_onnx_model, convert_from_pytorch_model |
| 8 | +from hls4ml.utils.config import config_from_onnx_model, config_from_pytorch_model |
| 9 | + |
| 10 | +test_root_path = Path(__file__).parent |
| 11 | + |
| 12 | + |
| 13 | +def _make_constantpad_onnx_1d(): |
| 14 | + input_tensor = helper.make_tensor_value_info('global_in', TensorProto.FLOAT, [1, 2, 4]) |
| 15 | + output_tensor = helper.make_tensor_value_info('global_out', TensorProto.FLOAT, [1, 2, 9]) |
| 16 | + pads_tensor = helper.make_tensor_value_info('pads', TensorProto.INT64, [6]) |
| 17 | + value_tensor = helper.make_tensor_value_info('value', TensorProto.FLOAT, []) |
| 18 | + |
| 19 | + # Pads = [N_before, C_before, W_before, N_after, C_after, W_after] |
| 20 | + pads = [0, 0, 2, 0, 0, 3] |
| 21 | + |
| 22 | + pads_initializer = helper.make_tensor(name='pads', data_type=TensorProto.INT64, dims=[6], vals=pads) |
| 23 | + value_initializer = helper.make_tensor(name='value', data_type=TensorProto.FLOAT, dims=[], vals=[0.0]) |
| 24 | + |
| 25 | + pad_node = helper.make_node( |
| 26 | + 'Pad', name='const_pad', inputs=['global_in', 'pads', 'value'], outputs=['global_out'], mode='constant' |
| 27 | + ) |
| 28 | + |
| 29 | + graph = helper.make_graph( |
| 30 | + nodes=[pad_node], |
| 31 | + name='Pad1DGraph', |
| 32 | + inputs=[input_tensor], |
| 33 | + outputs=[output_tensor], |
| 34 | + initializer=[pads_initializer, value_initializer], |
| 35 | + value_info=[pads_tensor, value_tensor], |
| 36 | + ) |
| 37 | + |
| 38 | + model = helper.make_model(graph) |
| 39 | + |
| 40 | + return model |
| 41 | + |
| 42 | + |
| 43 | +def test_constantpad_1d(): |
| 44 | + class Pad1DModel(nn.Module): |
| 45 | + def __init__(self): |
| 46 | + super().__init__() |
| 47 | + self.pad = nn.ConstantPad1d((2, 3), 0) # pad 2 left, 3 right |
| 48 | + |
| 49 | + def forward(self, x): |
| 50 | + return self.pad(x) |
| 51 | + |
| 52 | + model = Pad1DModel() |
| 53 | + model.eval() |
| 54 | + config_pytorch = config_from_pytorch_model(model, (2, 4), channels_last_conversion='off') |
| 55 | + hls_model_pytorch = convert_from_pytorch_model( |
| 56 | + model, output_dir=str(test_root_path / 'hls4mlprj_constpad_1d/pytorch'), hls_config=config_pytorch |
| 57 | + ) |
| 58 | + |
| 59 | + hls_model_pytorch.compile() |
| 60 | + |
| 61 | + pad1d_onnx = _make_constantpad_onnx_1d() |
| 62 | + |
| 63 | + config_onnx = config_from_onnx_model(pad1d_onnx) |
| 64 | + hls_model_onnx = convert_from_onnx_model( |
| 65 | + pad1d_onnx, output_dir=str(test_root_path / 'hls4mlprj_constpad_1d/onnx'), hls_config=config_onnx |
| 66 | + ) |
| 67 | + |
| 68 | + hls_model_onnx.compile() |
| 69 | + |
| 70 | + input_data = np.random.randn(10, 2, 4) |
| 71 | + pred_pytorch = hls_model_pytorch.predict(input_data) |
| 72 | + pred_onnx = hls_model_onnx.predict(input_data) |
| 73 | + |
| 74 | + np.testing.assert_allclose(pred_pytorch, pred_onnx, rtol=0, atol=1e-5) |
| 75 | + |
| 76 | + |
| 77 | +def _make_constantpad_onnx_2d(): |
| 78 | + input_tensor = helper.make_tensor_value_info('global_in', TensorProto.FLOAT, [1, 2, 3, 4]) |
| 79 | + output_tensor = helper.make_tensor_value_info('global_out', TensorProto.FLOAT, [1, 2, 10, 7]) |
| 80 | + pads_tensor = helper.make_tensor_value_info('pads', TensorProto.INT64, [8]) |
| 81 | + value_tensor = helper.make_tensor_value_info('value', TensorProto.FLOAT, []) |
| 82 | + |
| 83 | + # Pads = [N_before, C_before, H_before, W_before, N_after, C_after, H_after, W_after] |
| 84 | + pads = [0, 0, 3, 1, 0, 0, 4, 2] |
| 85 | + |
| 86 | + pads_initializer = helper.make_tensor(name='pads', data_type=TensorProto.INT64, dims=[8], vals=pads) |
| 87 | + value_initializer = helper.make_tensor(name='value', data_type=TensorProto.FLOAT, dims=[], vals=[0.0]) |
| 88 | + |
| 89 | + pad_node = helper.make_node( |
| 90 | + 'Pad', name='const_pad', inputs=['global_in', 'pads', 'value'], outputs=['global_out'], mode='constant' |
| 91 | + ) |
| 92 | + |
| 93 | + graph = helper.make_graph( |
| 94 | + nodes=[pad_node], |
| 95 | + name='Pad2DGraph', |
| 96 | + inputs=[input_tensor], |
| 97 | + outputs=[output_tensor], |
| 98 | + initializer=[pads_initializer, value_initializer], |
| 99 | + value_info=[pads_tensor, value_tensor], |
| 100 | + ) |
| 101 | + |
| 102 | + model = helper.make_model(graph) |
| 103 | + |
| 104 | + return model |
| 105 | + |
| 106 | + |
| 107 | +def test_constantpad_2d(): |
| 108 | + class Pad2DModel(nn.Module): |
| 109 | + def __init__(self): |
| 110 | + super().__init__() |
| 111 | + self.pad = nn.ConstantPad2d((1, 2, 3, 4), 0) # left, right, top, bottom |
| 112 | + |
| 113 | + def forward(self, x): |
| 114 | + return self.pad(x) |
| 115 | + |
| 116 | + model = Pad2DModel() |
| 117 | + model.eval() |
| 118 | + config_pytorch = config_from_pytorch_model(model, (2, 3, 4), channels_last_conversion='off') |
| 119 | + hls_model_pytorch = convert_from_pytorch_model( |
| 120 | + model, output_dir=str(test_root_path / 'hls4mlprj_constpad_2d/pytorch'), hls_config=config_pytorch |
| 121 | + ) |
| 122 | + |
| 123 | + hls_model_pytorch.compile() |
| 124 | + |
| 125 | + pad2d_onnx = _make_constantpad_onnx_2d() |
| 126 | + |
| 127 | + config_onnx = config_from_onnx_model(pad2d_onnx) |
| 128 | + hls_model_onnx = convert_from_onnx_model( |
| 129 | + pad2d_onnx, output_dir=str(test_root_path / 'hls4mlprj_constpad_2d/onnx'), hls_config=config_onnx |
| 130 | + ) |
| 131 | + |
| 132 | + hls_model_onnx.compile() |
| 133 | + |
| 134 | + input_data = np.random.randn(10, 2, 3, 4) |
| 135 | + pred_pytorch = hls_model_pytorch.predict(input_data) |
| 136 | + pred_onnx = hls_model_onnx.predict(input_data) |
| 137 | + |
| 138 | + np.testing.assert_allclose(pred_pytorch, pred_onnx, rtol=0, atol=1e-5) |
0 commit comments