|
| 1 | +""" |
| 2 | +Aperiodic Parameters |
| 3 | +==================== |
| 4 | +
|
| 5 | +Exploring properties and topics related to aperiodic parameters. |
| 6 | +""" |
| 7 | + |
| 8 | +################################################################################################### |
| 9 | + |
| 10 | +from scipy.stats import spearmanr |
| 11 | + |
| 12 | +from fooof import FOOOF, FOOOFGroup |
| 13 | +from fooof.plts.spectra import plot_spectra |
| 14 | +from fooof.plts.annotate import plot_annotated_model |
| 15 | +from fooof.plts.aperiodic import plot_aperiodic_params |
| 16 | +from fooof.sim.params import Stepper, param_iter |
| 17 | +from fooof.sim import gen_power_spectrum, gen_group_power_spectra |
| 18 | +from fooof.utils.params import compute_time_constant, compute_knee_frequency |
| 19 | + |
| 20 | +################################################################################################### |
| 21 | +# 'Fixed' Model |
| 22 | +# ------------- |
| 23 | +# |
| 24 | +# First, we will explore the 'fixed' model, which fits an offset and exponent value |
| 25 | +# to characterize the 1/f-like aperiodic component of the data. |
| 26 | +# |
| 27 | + |
| 28 | +################################################################################################### |
| 29 | + |
| 30 | +# Simulate an example power spectrum |
| 31 | +freqs, powers = gen_power_spectrum([1, 50], [0, 1], [10, 0.25, 2], freq_res=0.25) |
| 32 | + |
| 33 | +################################################################################################### |
| 34 | + |
| 35 | +# Initialize model object and fit power spectrum |
| 36 | +fm = FOOOF(min_peak_height=0.1) |
| 37 | +fm.fit(freqs, powers) |
| 38 | + |
| 39 | +################################################################################################### |
| 40 | + |
| 41 | +# Check the aperiodic parameters |
| 42 | +fm.aperiodic_params_ |
| 43 | + |
| 44 | +################################################################################################### |
| 45 | + |
| 46 | +# Plot annotated model of aperiodic parameters |
| 47 | +plot_annotated_model(fm, annotate_peaks=False, annotate_aperiodic=True, plt_log=True) |
| 48 | + |
| 49 | +################################################################################################### |
| 50 | +# Comparing Offset & Exponent |
| 51 | +# --------------------------- |
| 52 | +# |
| 53 | +# A common analysis of model fit parameters includes examining and comparing changes |
| 54 | +# in the offset and/or exponent values of a set of models, which we will now explore. |
| 55 | +# |
| 56 | +# To do so, we will start by simulating a set of power spectra with different exponent values. |
| 57 | +# |
| 58 | + |
| 59 | +################################################################################################### |
| 60 | + |
| 61 | +# Define simulation parameters, stepping across different exponent values |
| 62 | +exp_steps = Stepper(0, 2, 0.25) |
| 63 | +ap_params = param_iter([1, exp_steps]) |
| 64 | + |
| 65 | +################################################################################################### |
| 66 | + |
| 67 | +# Simulate a group of power spectra |
| 68 | +freqs, powers = gen_group_power_spectra(\ |
| 69 | + len(exp_steps), [3, 40], ap_params, [10, 0.25, 1], freq_res=0.25, f_rotation=10) |
| 70 | + |
| 71 | +################################################################################################### |
| 72 | + |
| 73 | +# Plot the set of example power spectra |
| 74 | +plot_spectra(freqs, powers, log_powers=True) |
| 75 | + |
| 76 | +################################################################################################### |
| 77 | + |
| 78 | +# Initialize a group mode object and parameterize the power spectra |
| 79 | +fg = FOOOFGroup() |
| 80 | +fg.fit(freqs, powers) |
| 81 | + |
| 82 | +################################################################################################### |
| 83 | + |
| 84 | +# Extract the aperiodic values of the model fits |
| 85 | +ap_values = fg.get_params('aperiodic') |
| 86 | + |
| 87 | +################################################################################################### |
| 88 | + |
| 89 | +# Plot the aperiodic parameters |
| 90 | +plot_aperiodic_params(fg.get_params('aperiodic')) |
| 91 | + |
| 92 | +################################################################################################### |
| 93 | + |
| 94 | +# Compute the correlation between the offset and exponent |
| 95 | +spearmanr(ap_values[0, :], ap_values[1, :]) |
| 96 | + |
| 97 | +################################################################################################### |
| 98 | +# |
| 99 | +# What we see above matches the common finding that that the offset and exponent are |
| 100 | +# often highly correlated! This is because if you imagine a change in exponent as |
| 101 | +# the spectrum 'rotating' around some frequency value, then (almost) any change in exponent |
| 102 | +# has a corresponding change in offset value! If you note in the above, we actually specified |
| 103 | +# a rotation point around which the exponent changes. |
| 104 | +# |
| 105 | +# This can also be seen in this animation showing this effect across different rotation points: |
| 106 | +# |
| 107 | +#  |
| 108 | +# |
| 109 | +# Notably this means that while the offset and exponent can change independently (there can be |
| 110 | +# offset changes over and above exponent changes), the baseline expectation is that these |
| 111 | +# two parameters are highly correlated and likely reflect the same change in the data! |
| 112 | +# |
| 113 | + |
| 114 | +################################################################################################### |
| 115 | +# Knee Model |
| 116 | +# ---------- |
| 117 | +# |
| 118 | +# Next, let's explore the knee model, which parameterizes the aperiodic component with |
| 119 | +# an offset, knee, and exponent value. |
| 120 | +# |
| 121 | + |
| 122 | +################################################################################################### |
| 123 | + |
| 124 | +# Generate a power spectrum with a knee |
| 125 | +freqs2, powers2 = gen_power_spectrum([1, 50], [0, 15, 1], [8, 0.125, 0.75], freq_res=0.25) |
| 126 | + |
| 127 | +################################################################################################### |
| 128 | + |
| 129 | +# Initialize model object and fit power spectrum |
| 130 | +fm = FOOOF(min_peak_height=0.05, aperiodic_mode='knee') |
| 131 | +fm.fit(freqs2, powers2) |
| 132 | + |
| 133 | +################################################################################################### |
| 134 | + |
| 135 | +# Plot annotated knee model |
| 136 | +plot_annotated_model(fm, annotate_peaks=False, annotate_aperiodic=True, plt_log=True) |
| 137 | + |
| 138 | +################################################################################################### |
| 139 | + |
| 140 | +# Check the measured aperiodic parameters |
| 141 | +fm.aperiodic_params_ |
| 142 | + |
| 143 | +################################################################################################### |
| 144 | +# Knee Frequency |
| 145 | +# ~~~~~~~~~~~~~~ |
| 146 | +# |
| 147 | +# You might notice that the knee _parameter_ is not an obvious value. Notably, this parameter |
| 148 | +# value as extracted from the model is something of an abstract quantify based on the |
| 149 | +# formalization of the underlying fit function. A more intuitive measure that we may |
| 150 | +# be interested in is the 'knee frequency', which is an estimate of the frequency value |
| 151 | +# at which the knee occurs. |
| 152 | +# |
| 153 | +# The `:func:`~.compute_knee_frequency` function can be used to compute the knee frequency. |
| 154 | +# |
| 155 | + |
| 156 | +################################################################################################### |
| 157 | + |
| 158 | +# Compute the knee frequency from aperiodic parameters |
| 159 | +knee_frequency = compute_knee_frequency(*fm.aperiodic_params_[1:]) |
| 160 | +print('Knee frequency: ', knee_frequency) |
| 161 | + |
| 162 | +################################################################################################### |
| 163 | +# Time Constant |
| 164 | +# ~~~~~~~~~~~~~ |
| 165 | +# |
| 166 | +# Another interesting property of the knee parameter is that it has a direct relationship |
| 167 | +# to the auto-correlation function, and from there to the empirical time constant of the data. |
| 168 | +# |
| 169 | +# The `:func:`~.compute_time_constant` function can be used to compute the knee-derived |
| 170 | +# time constant. |
| 171 | +# |
| 172 | + |
| 173 | +################################################################################################### |
| 174 | + |
| 175 | +# Compute the characteristic time constant of a knee value |
| 176 | +time_constant = compute_time_constant(fm.get_params('aperiodic', 'knee')) |
| 177 | +print('Knee derived time constant: ', time_constant) |
0 commit comments