|
| 1 | +#include "ggml-cuda/common.cuh" |
| 2 | +#include "roll.cuh" |
| 3 | + |
| 4 | +static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) { |
| 5 | + if (idx < 0) { |
| 6 | + return idx + ne; |
| 7 | + } |
| 8 | + if (idx >= ne) { |
| 9 | + return idx - ne; |
| 10 | + } |
| 11 | + return idx; |
| 12 | +} |
| 13 | + |
| 14 | +static __global__ void roll_f32_cuda(const float * __restrict__ src, |
| 15 | + float * __restrict__ dst, |
| 16 | + const int64_t ne00, |
| 17 | + const int64_t ne01, |
| 18 | + const int64_t ne02, |
| 19 | + const int64_t ne03, |
| 20 | + const int s0, |
| 21 | + const int s1, |
| 22 | + const int s2, |
| 23 | + const int s3) { |
| 24 | + const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x; |
| 25 | + const int64_t n_elements = ne00 * ne01 * ne02 * ne03; |
| 26 | + |
| 27 | + if (idx >= n_elements) { |
| 28 | + return; |
| 29 | + } |
| 30 | + |
| 31 | + const int64_t i0 = idx % ne00; |
| 32 | + const int64_t i1 = (idx / ne00) % ne01; |
| 33 | + const int64_t i2 = (idx / (ne00 * ne01)) % ne02; |
| 34 | + const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03; |
| 35 | + |
| 36 | + const int64_t d0 = wrap_index(i0 - s0, ne00); |
| 37 | + const int64_t d1 = wrap_index(i1 - s1, ne01); |
| 38 | + const int64_t d2 = wrap_index(i2 - s2, ne02); |
| 39 | + const int64_t d3 = wrap_index(i3 - s3, ne03); |
| 40 | + |
| 41 | + dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] = |
| 42 | + src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0]; |
| 43 | +} |
| 44 | + |
| 45 | +void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 46 | + int s0 = dst->op_params[0]; |
| 47 | + int s1 = dst->op_params[1]; |
| 48 | + int s2 = dst->op_params[2]; |
| 49 | + int s3 = dst->op_params[3]; |
| 50 | + |
| 51 | + const ggml_tensor * src0 = dst->src[0]; |
| 52 | + const float * src0_d = (const float *) dst->src[0]->data; |
| 53 | + float * dst_d = (float *) dst->data; |
| 54 | + |
| 55 | + GGML_TENSOR_UNARY_OP_LOCALS; |
| 56 | + |
| 57 | + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); |
| 58 | + GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst)); |
| 59 | + |
| 60 | + cudaStream_t stream = ctx.stream(); |
| 61 | + |
| 62 | + int64_t sz = (ne00 * ne01 * ne02 * ne03); |
| 63 | + int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE; |
| 64 | + |
| 65 | + roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>( |
| 66 | + src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3); |
| 67 | +} |
0 commit comments