2323#ifndef CANN_ACL_TENSOR_H
2424#define CANN_ACL_TENSOR_H
2525
26- #include < algorithm>
27- #include < cstring>
26+ #include " common.h"
2827
2928#include < aclnn/aclnn_base.h>
30- #include " common.h"
29+
30+ #include < algorithm>
31+ #include < cstring>
3132
3233/* *
3334 * @brief Maps a ggml_type to its corresponding aclDataType.
4445aclDataType ggml_cann_type_mapping (ggml_type type);
4546
4647struct acl_tensor_deleter {
47- void operator ()(aclTensor* ptr) const noexcept {
48+ void operator ()(aclTensor * ptr) const noexcept {
4849 if (ptr != nullptr ) {
4950 ACL_CHECK (aclDestroyTensor (ptr));
5051 }
@@ -54,7 +55,7 @@ struct acl_tensor_deleter {
5455using acl_tensor_ptr = std::unique_ptr<aclTensor, acl_tensor_deleter>;
5556
5657struct acl_int_array_deleter {
57- void operator ()(aclIntArray* ptr) const noexcept {
58+ void operator ()(aclIntArray * ptr) const noexcept {
5859 if (ptr != nullptr ) {
5960 ACL_CHECK (aclDestroyIntArray (ptr));
6061 }
@@ -64,7 +65,7 @@ struct acl_int_array_deleter {
6465using acl_int_array_ptr = std::unique_ptr<aclIntArray, acl_int_array_deleter>;
6566
6667struct acl_scalar_deleter {
67- void operator ()(aclScalar* ptr) const noexcept {
68+ void operator ()(aclScalar * ptr) const noexcept {
6869 if (ptr != nullptr ) {
6970 ACL_CHECK (aclDestroyScalar (ptr));
7071 }
@@ -74,7 +75,7 @@ struct acl_scalar_deleter {
7475using acl_scalar_ptr = std::unique_ptr<aclScalar, acl_scalar_deleter>;
7576
7677struct acl_tensor_list_deleter {
77- void operator ()(aclTensorList* ptr) const noexcept {
78+ void operator ()(aclTensorList * ptr) const noexcept {
7879 if (ptr != nullptr ) {
7980 ACL_CHECK (aclDestroyTensorList (ptr));
8081 }
@@ -103,11 +104,11 @@ using acl_tensor_list_ptr = std::unique_ptr<aclTensorList, acl_tensor_list_delet
103104 * @return Pointer to the created ACL tensor.
104105 */
105106acl_tensor_ptr ggml_cann_create_tensor (const ggml_tensor * tensor,
106- int64_t * ne = nullptr ,
107- size_t * nb = nullptr ,
108- int64_t dims = 0 ,
109- aclFormat format = ACL_FORMAT_ND,
110- size_t offset = 0 );
107+ int64_t * ne = nullptr ,
108+ size_t * nb = nullptr ,
109+ int64_t dims = 0 ,
110+ aclFormat format = ACL_FORMAT_ND,
111+ size_t offset = 0 );
111112
112113/* *
113114 * @brief Template for creating an ACL tensor from provided parameters. typename TYPE
@@ -131,13 +132,13 @@ acl_tensor_ptr ggml_cann_create_tensor(const ggml_tensor * tensor,
131132 */
132133template <typename TYPE>
133134acl_tensor_ptr ggml_cann_create_tensor (void * data_ptr,
134- aclDataType dtype,
135- TYPE type_size,
136- int64_t * ne,
137- TYPE * nb,
138- int64_t dims,
139- aclFormat format = ACL_FORMAT_ND,
140- size_t offset = 0 ) {
135+ aclDataType dtype,
136+ TYPE type_size,
137+ int64_t * ne,
138+ TYPE * nb,
139+ int64_t dims,
140+ aclFormat format = ACL_FORMAT_ND,
141+ size_t offset = 0 ) {
141142 int64_t tmp_ne[GGML_MAX_DIMS * 2 ];
142143 int64_t tmp_stride[GGML_MAX_DIMS * 2 ];
143144
@@ -160,21 +161,19 @@ acl_tensor_ptr ggml_cann_create_tensor(void * data_ptr,
160161 return acl_tensor_ptr (raw);
161162}
162163
163- acl_int_array_ptr ggml_cann_create_int_array (const int64_t *value, uint64_t size);
164- acl_scalar_ptr ggml_cann_create_scalar (void *value, aclDataType dataType);
164+ acl_int_array_ptr ggml_cann_create_int_array (const int64_t * value, uint64_t size);
165+ acl_scalar_ptr ggml_cann_create_scalar (void * value, aclDataType dataType);
165166
166- template <typename ... acl_tensor_ptr>
167- acl_tensor_list_ptr ggml_cann_create_tensor_list (acl_tensor_ptr&&... tensors) {
168- aclTensor* raw_tensors[] = { tensors.get ()... };
169- aclTensorList * raw = aclCreateTensorList (raw_tensors, sizeof ...(tensors));
167+ template <typename ... acl_tensor_ptr> acl_tensor_list_ptr ggml_cann_create_tensor_list (acl_tensor_ptr &&... tensors) {
168+ aclTensor * raw_tensors[] = { tensors.get ()... };
169+ aclTensorList * raw = aclCreateTensorList (raw_tensors, sizeof ...(tensors));
170170 // aclTensor will release by aclTensorList, so release ownership without
171171 // destroying the tensor
172- int dummy[] = { (tensors.release (), 0 )... };
172+ int dummy[] = { (tensors.release (), 0 )... };
173173 GGML_UNUSED (dummy);
174174 return acl_tensor_list_ptr (raw);
175175}
176176
177-
178177/* *
179178 * @brief Checks if tensors require broadcasting based on their shapes.
180179 *
0 commit comments