|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "c9f1da30-f441-4aaa-b91c-c1b6cf3b934d", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import datetime\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "import polars as pl" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 2, |
| 18 | + "id": "41066023-b80e-46be-bd3d-538edc93f88e", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stdout", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "CPU times: user 11.3 s, sys: 1.22 s, total: 12.5 s\n", |
| 26 | + "Wall time: 12.5 s\n" |
| 27 | + ] |
| 28 | + } |
| 29 | + ], |
| 30 | + "source": [ |
| 31 | + "%time df_pandas = pd.read_csv('large_data_0001.csv', parse_dates=['timestamp',])" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 3, |
| 37 | + "id": "0dae0538-b515-43eb-a6e7-3c912fdec520", |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [ |
| 40 | + { |
| 41 | + "name": "stdout", |
| 42 | + "output_type": "stream", |
| 43 | + "text": [ |
| 44 | + "CPU times: user 9.54 s, sys: 1.81 s, total: 11.4 s\n", |
| 45 | + "Wall time: 1.08 s\n" |
| 46 | + ] |
| 47 | + } |
| 48 | + ], |
| 49 | + "source": [ |
| 50 | + "%time df_polars = pl.read_csv('large_data_0001.csv', try_parse_dates=True)" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 8, |
| 56 | + "id": "c2e3e5b5-5433-439a-be0e-892444a08200", |
| 57 | + "metadata": { |
| 58 | + "scrolled": true |
| 59 | + }, |
| 60 | + "outputs": [ |
| 61 | + { |
| 62 | + "name": "stdout", |
| 63 | + "output_type": "stream", |
| 64 | + "text": [ |
| 65 | + "689 ms ± 16.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 66 | + ] |
| 67 | + } |
| 68 | + ], |
| 69 | + "source": [ |
| 70 | + "%timeit days_pandas = df_pandas.groupby(df_pandas.timestamp.dt.day).mean()" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 9, |
| 76 | + "id": "85de86a0-3aac-41f0-9c8e-12cef85d350c", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [ |
| 79 | + { |
| 80 | + "name": "stdout", |
| 81 | + "output_type": "stream", |
| 82 | + "text": [ |
| 83 | + "143 ms ± 8.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 84 | + ] |
| 85 | + } |
| 86 | + ], |
| 87 | + "source": [ |
| 88 | + "%timeit days_polars = df_polars.group_by_dynamic('timestamp', every='1d').agg(pl.exclude('timestamp').mean())" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 12, |
| 94 | + "id": "b6ea2c6d-b63b-4413-b455-445446bc8a54", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [ |
| 97 | + { |
| 98 | + "name": "stdout", |
| 99 | + "output_type": "stream", |
| 100 | + "text": [ |
| 101 | + "308 ms ± 37.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "%timeit df_pandas['avg'] = df_pandas[[f'C{i}' for i in range(1, 101)]].sum(axis=1)" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 15, |
| 112 | + "id": "c7f0452c-bd57-4054-b0e0-d8bcfed164d7", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "text/html": [ |
| 118 | + "<div><style>\n", |
| 119 | + ".dataframe > thead > tr,\n", |
| 120 | + ".dataframe > tbody > tr {\n", |
| 121 | + " text-align: right;\n", |
| 122 | + " white-space: pre-wrap;\n", |
| 123 | + "}\n", |
| 124 | + "</style>\n", |
| 125 | + "<small>shape: (788_323, 1)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>avg</th></tr><tr><td>f64</td></tr></thead><tbody><tr><td>100.0</td></tr><tr><td>99.984866</td></tr><tr><td>99.94813</td></tr><tr><td>99.905195</td></tr><tr><td>99.953866</td></tr><tr><td>…</td></tr><tr><td>79.357997</td></tr><tr><td>79.347877</td></tr><tr><td>79.308389</td></tr><tr><td>79.302168</td></tr><tr><td>79.262233</td></tr></tbody></table></div>" |
| 126 | + ], |
| 127 | + "text/plain": [ |
| 128 | + "shape: (788_323, 1)\n", |
| 129 | + "┌───────────┐\n", |
| 130 | + "│ avg │\n", |
| 131 | + "│ --- │\n", |
| 132 | + "│ f64 │\n", |
| 133 | + "╞═══════════╡\n", |
| 134 | + "│ 100.0 │\n", |
| 135 | + "│ 99.984866 │\n", |
| 136 | + "│ 99.94813 │\n", |
| 137 | + "│ 99.905195 │\n", |
| 138 | + "│ 99.953866 │\n", |
| 139 | + "│ … │\n", |
| 140 | + "│ 79.357997 │\n", |
| 141 | + "│ 79.347877 │\n", |
| 142 | + "│ 79.308389 │\n", |
| 143 | + "│ 79.302168 │\n", |
| 144 | + "│ 79.262233 │\n", |
| 145 | + "└───────────┘" |
| 146 | + ] |
| 147 | + }, |
| 148 | + "execution_count": 15, |
| 149 | + "metadata": {}, |
| 150 | + "output_type": "execute_result" |
| 151 | + } |
| 152 | + ], |
| 153 | + "source": [ |
| 154 | + "df_polars.select(pl.sum_horizontal(pl.exclude('timestamp')).alias('avg'))" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "id": "679aa3bb-5bf8-47db-b421-8a316883767c", |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [] |
| 164 | + } |
| 165 | + ], |
| 166 | + "metadata": { |
| 167 | + "kernelspec": { |
| 168 | + "display_name": "Python 3 (ipykernel)", |
| 169 | + "language": "python", |
| 170 | + "name": "python3" |
| 171 | + }, |
| 172 | + "language_info": { |
| 173 | + "codemirror_mode": { |
| 174 | + "name": "ipython", |
| 175 | + "version": 3 |
| 176 | + }, |
| 177 | + "file_extension": ".py", |
| 178 | + "mimetype": "text/x-python", |
| 179 | + "name": "python", |
| 180 | + "nbconvert_exporter": "python", |
| 181 | + "pygments_lexer": "ipython3", |
| 182 | + "version": "3.12.5" |
| 183 | + } |
| 184 | + }, |
| 185 | + "nbformat": 4, |
| 186 | + "nbformat_minor": 5 |
| 187 | +} |
0 commit comments