Skip to content

I tried to embed the soft rank into the pytorch model and loss function and the following error was reported. #16

@XiaoqiWang

Description

@XiaoqiWang
loss.backward()

File "E:\conda\lib\site-packages\torch_tensor.py", line 307, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "E:\conda\lib\site-packages\torch\autograd_init_.py", line 154, in backward
Variable._execution_engine.run_backward(
RuntimeError: Function NumpyOpWrapperBackward returned an invalid gradient at index 0 - expected type TensorOptions(dtype=float, device=cuda:0, layout=Strided, requires_grad=false (default), pinned_memory=false (default), memory_format=(nullopt)) but got TensorOptions(dtype=float, device=cpu, layout=Strided, requires_grad=false (default), pinned_memory=false (default), memory_format=(nullopt))

the forward part of the loss function is as follows:

def forward(self, preds, gt):
preds_rank = torch_ops.soft_rank(preds.unsqueeze(0)).float()
gt_rank = torch_ops.soft_rank(gt.unsqueeze(0)).float()

Looking forward to your reply.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions