|
| 1 | +<!--Copyright 2025 the HuggingFace Team. All rights reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. |
| 14 | +
|
| 15 | +
|
| 16 | +⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. |
| 17 | +
|
| 18 | +--> |
| 19 | +*This model was released on 2025-07-09 and added to Hugging Face Transformers on 2025-09-15.* |
| 20 | +<div style="float: right;"> |
| 21 | + <div class="flex flex-wrap space-x-1"> |
| 22 | + <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white"> |
| 23 | + <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat"> |
| 24 | + <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> |
| 25 | + </div> |
| 26 | +</div> |
| 27 | + |
| 28 | +# FlexOlmo |
| 29 | + |
| 30 | +[FlexOlmo](https://huggingface.co/papers/2507.07024) is a new class of language models (LMs) that supports (1) distributed training without data sharing, where different model parameters are independently trained on closed datasets, and (2) data-flexible inference, where these parameters along with their associated data can be flexibly included or excluded from model inferences with no further training. FlexOlmo employs a mixture-of-experts (MoE) architecture where each expert is trained independently on closed datasets and later integrated through a new domain-informed routing without any joint training. FlexOlmo is trained on FlexMix, a corpus we curate comprising publicly available datasets alongside seven domain-specific sets, representing realistic approximations of closed sets. |
| 31 | + |
| 32 | +You can find all the original FlexOlmo checkpoints under the [FlexOlmo](https://huggingface.co/collections/allenai/flexolmo-68471177a386b6e20a54c55f) collection. |
| 33 | + |
| 34 | +> [!TIP] |
| 35 | +> Click on the FlexOlmo models in the right sidebar for more examples of how to apply FlexOlmo to different language tasks. |
| 36 | +
|
| 37 | +The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line. |
| 38 | + |
| 39 | +<hfoptions id="usage"> |
| 40 | +<hfoption id="Pipeline"> |
| 41 | + |
| 42 | +```py |
| 43 | +import torch |
| 44 | +from transformers import pipeline |
| 45 | + |
| 46 | +pipe = pipeline( |
| 47 | + task="text-generation", |
| 48 | + model="allenai/FlexOlmo-7x7B-1T", |
| 49 | + dtype=torch.bfloat16, |
| 50 | + device=0, |
| 51 | +) |
| 52 | + |
| 53 | +result = pipe("Plants create energy through a process known as") |
| 54 | +print(result) |
| 55 | +``` |
| 56 | + |
| 57 | +</hfoption> |
| 58 | +<hfoption id="AutoModel"> |
| 59 | + |
| 60 | +```py |
| 61 | +import torch |
| 62 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 63 | + |
| 64 | +tokenizer = AutoTokenizer.from_pretrained( |
| 65 | + "allenai/FlexOlmo-7x7B-1T" |
| 66 | +) |
| 67 | + |
| 68 | +model = AutoModelForCausalLM.from_pretrained( |
| 69 | + "allenai/FlexOlmo-7x7B-1T", |
| 70 | + dtype=torch.bfloat16, |
| 71 | + device_map="auto", |
| 72 | + attn_implementation="sdpa" |
| 73 | +) |
| 74 | +input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device) |
| 75 | + |
| 76 | +output = model.generate(**input_ids, max_length=50, cache_implementation="static") |
| 77 | +print(tokenizer.decode(output[0], skip_special_tokens=True)) |
| 78 | +``` |
| 79 | + |
| 80 | +</hfoption> |
| 81 | +<hfoption id="transformers CLI"> |
| 82 | + |
| 83 | +```bash |
| 84 | +echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/FlexOlmo-7x7B-1T --device 0 |
| 85 | +``` |
| 86 | + |
| 87 | +</hfoption> |
| 88 | +</hfoptions> |
| 89 | + |
| 90 | +Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. |
| 91 | + |
| 92 | +The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits. |
| 93 | +```py |
| 94 | + |
| 95 | +#pip install torchao |
| 96 | +import torch |
| 97 | +from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
| 98 | + |
| 99 | +torchao_config = TorchAoConfig( |
| 100 | + "int4_weight_only", |
| 101 | + group_size=128 |
| 102 | +) |
| 103 | + |
| 104 | +tokenizer = AutoTokenizer.from_pretrained( |
| 105 | + "allenai/FlexOlmo-7x7B-1T" |
| 106 | +) |
| 107 | + |
| 108 | +model = AutoModelForCausalLM.from_pretrained( |
| 109 | + "allenai/FlexOlmo-7x7B-1T", |
| 110 | + quantization_config=torchao_config, |
| 111 | + dtype=torch.bfloat16, |
| 112 | + device_map="auto", |
| 113 | + attn_implementation="sdpa" |
| 114 | +) |
| 115 | +input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device) |
| 116 | + |
| 117 | +output = model.generate(**input_ids, max_length=50, cache_implementation="static") |
| 118 | +print(tokenizer.decode(output[0], skip_special_tokens=True)) |
| 119 | + |
| 120 | +``` |
| 121 | + |
| 122 | + |
| 123 | +## FlexOlmoConfig |
| 124 | + |
| 125 | +[[autodoc]] FlexOlmoConfig |
| 126 | + |
| 127 | +## FlexOlmoForCausalLM |
| 128 | + |
| 129 | +[[autodoc]] FlexOlmoForCausalLM |
| 130 | + |
| 131 | +## FlexOlmoModel |
| 132 | + |
| 133 | +[[autodoc]] FlexOlmoModel |
| 134 | + - forward |
| 135 | + |
| 136 | +## FlexOlmoPreTrainedModel |
| 137 | + |
| 138 | +[[autodoc]] FlexOlmoPreTrainedModel |
| 139 | + - forward |
0 commit comments