@@ -215,7 +215,7 @@ def load_combined_trials(sess_paths, one, force=True):
215215 return training .concatenate_trials (trials_dict )
216216
217217
218- def get_latest_training_information (sess_path , one ):
218+ def get_latest_training_information (sess_path , one , save = True ):
219219 """
220220 Extracts the latest training status.
221221
@@ -262,7 +262,8 @@ def get_latest_training_information(sess_path, one):
262262 df = df .sort_values ('date' )
263263 df = df .reset_index (drop = True )
264264 # Save our dataframe
265- save_dataframe (df , subj_path )
265+ if save :
266+ save_dataframe (df , subj_path )
266267
267268 # Now go through the backlog and compute the training status for sessions. If for example one was missing as it is cumulative
268269 # we need to go through and compute all the backlog
@@ -288,10 +289,10 @@ def get_latest_training_information(sess_path, one):
288289 if 'ready4ephysrig' not in tr_st :
289290 sess = un_df .iloc [39 ].session_path
290291 df .loc [df ['session_path' ] == sess , 'training_status' ] = 'unbiasable'
292+ if save :
293+ save_dataframe (df , subj_path )
291294
292- save_dataframe (df , subj_path )
293-
294- if one .mode != 'local' :
295+ if one .mode != 'local' and save :
295296 upload_training_table_to_aws (lab , sub )
296297
297298 return df
@@ -519,11 +520,11 @@ def get_sess_dict(session_path, one, protocol, alf_collections=None, raw_collect
519520 sess_dict ['n_delay' ] = np .nan
520521 sess_dict ['location' ] = np .nan
521522 sess_dict ['training_status' ] = 'habituation'
522- sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapsehigh_50 ' ], sess_dict ['lapselow_50 ' ] = \
523+ sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapselow_50 ' ], sess_dict ['lapsehigh_50 ' ] = \
523524 (np .nan , np .nan , np .nan , np .nan )
524- sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapsehigh_20 ' ], sess_dict ['lapselow_20 ' ] = \
525+ sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapselow_20 ' ], sess_dict ['lapsehigh_20 ' ] = \
525526 (np .nan , np .nan , np .nan , np .nan )
526- sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapsehigh_80 ' ], sess_dict ['lapselow_80 ' ] = \
527+ sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapselow_80 ' ], sess_dict ['lapsehigh_80 ' ] = \
527528 (np .nan , np .nan , np .nan , np .nan )
528529
529530 else :
@@ -534,18 +535,18 @@ def get_sess_dict(session_path, one, protocol, alf_collections=None, raw_collect
534535
535536 sess_dict ['performance' ], sess_dict ['contrasts' ], _ = training .compute_performance (trials , prob_right = True )
536537 if sess_dict ['task_protocol' ] == 'training' :
537- sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapsehigh_50 ' ], sess_dict ['lapselow_50 ' ] = \
538+ sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapselow_50 ' ], sess_dict ['lapsehigh_50 ' ] = \
538539 training .compute_psychometric (trials )
539- sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapsehigh_20 ' ], sess_dict ['lapselow_20 ' ] = \
540+ sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapselow_20 ' ], sess_dict ['lapsehigh_20 ' ] = \
540541 (np .nan , np .nan , np .nan , np .nan )
541- sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapsehigh_80 ' ], sess_dict ['lapselow_80 ' ] = \
542+ sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapselow_80 ' ], sess_dict ['lapsehigh_80 ' ] = \
542543 (np .nan , np .nan , np .nan , np .nan )
543544 else :
544- sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapsehigh_50 ' ], sess_dict ['lapselow_50 ' ] = \
545+ sess_dict ['bias_50' ], sess_dict ['thres_50' ], sess_dict ['lapselow_50 ' ], sess_dict ['lapsehigh_50 ' ] = \
545546 training .compute_psychometric (trials , block = 0.5 )
546- sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapsehigh_20 ' ], sess_dict ['lapselow_20 ' ] = \
547+ sess_dict ['bias_20' ], sess_dict ['thres_20' ], sess_dict ['lapselow_20 ' ], sess_dict ['lapsehigh_20 ' ] = \
547548 training .compute_psychometric (trials , block = 0.2 )
548- sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapsehigh_80 ' ], sess_dict ['lapselow_80 ' ] = \
549+ sess_dict ['bias_80' ], sess_dict ['thres_80' ], sess_dict ['lapselow_80 ' ], sess_dict ['lapsehigh_80 ' ] = \
549550 training .compute_psychometric (trials , block = 0.8 )
550551
551552 sess_dict ['performance_easy' ] = training .compute_performance_easy (trials )
@@ -646,8 +647,8 @@ def get_training_info_for_session(session_paths, one, force=True):
646647 for bias in [50 , 20 , 80 ]:
647648 sess_dict [f'combined_bias_{ bias } ' ] = psychs [f'{ bias } ' ][0 ]
648649 sess_dict [f'combined_thres_{ bias } ' ] = psychs [f'{ bias } ' ][1 ]
649- sess_dict [f'combined_lapsehigh_ { bias } ' ] = psychs [f'{ bias } ' ][2 ]
650- sess_dict [f'combined_lapselow_ { bias } ' ] = psychs [f'{ bias } ' ][3 ]
650+ sess_dict [f'combined_lapselow_ { bias } ' ] = psychs [f'{ bias } ' ][2 ]
651+ sess_dict [f'combined_lapsehigh_ { bias } ' ] = psychs [f'{ bias } ' ][3 ]
651652
652653 # Case where two sessions on same day with different number of contrasts! Oh boy
653654 if sess_dict ['combined_performance' ].size != sess_dict ['performance' ].size :
0 commit comments